[1] |
陈慕璇, 周祖怡, 卿维, 等. 人乳头瘤病毒感染患者宫颈菌群特征研究[J]. 中华预防医学杂志, 2021, 55(7):867-874. doi: 10.3760/cma.j.cn112150-20210224-00184.
|
[2] |
Hughes SM, Levy CN, Calienes FL, et al. Starting to have sexual intercourse is associated with increases in cervicovaginal immune mediators in young women: a prospective study and meta-analysis[J]. Elife, 2022, 11:e78565. doi:10.7554/eLife.78565.
|
[3] |
Lugo L, Puga M, Jacob C, et al. Cytokine profiling of samples positive for Chlamydia trachomatis and Human papillomavirus[J]. PLoS One, 2023, 18(3):e0279390. doi: 10.1371/journal.pone.0279390.
|
[4] |
Ruiz de Morales J, Puig L, Daudén E, et al. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies[J]. Autoimmun Rev, 2020, 19(1):102429. doi: 10.1016/j.autrev.2019.102429.
|
[5] |
Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the Intestinal Epithelial Tight Junction Barrier[J]. Front Immunol, 2021, 12:767456. doi: 10.3389/fimmu.2021.767456.
|
[6] |
Uciechowski P, Dempke W. Interleukin-6: A Masterplayer in the Cytokine Network[J]. Oncology, 2020, 98(3):131-137. doi: 10.1159/000505099.
pmid: 31958792
|
[7] |
Dold L, Frank L, Lutz P, et al. IL-6-Dependent STAT3 Activation and Induction of Proinflammatory Cytokines in Primary Sclerosing Cholangitis[J]. Clin Transl Gastroenterol, 2023, 14(8):e00603. doi: 10.14309/ctg.0000000000000603.
|
[8] |
Cabrera-Rivera GL, Madera-Sandoval RL, León-Pedroza JI, et al. Increased TNF-α production in response to IL-6 in patients with systemic inflammation without infection[J]. Clin Exp Immunol, 2022, 209(2):225-235. doi: 10.1093/cei/uxac055.
pmid: 35647912
|
[9] |
Korn T, Hiltensperger M. Role of IL-6 in the commitment of T cell subsets[J]. Cytokine, 2021, 146:155654. doi: 10.1016/j.cyto.2021.155654.
|
[10] |
Guo M, Fan S, Chen Q, et al. Platelet-derived microRNA-223 attenuates TNF-α induced monocytes adhesion to arterial endothelium by targeting ICAM-1 in Kawasaki disease[J]. Front Immunol, 2022, 13:922868. doi: 10.3389/fimmu.2022.922868.
|
[11] |
Skrzypczak-Wiercioch A, Sałat K. Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use[J]. Molecules, 2022, 27(17):5481. doi: 10.3390/molecules27175481.
|
[12] |
You L, Cui H, Zhao F, et al. Inhibition of HMGB1/RAGE axis suppressed the lipopolysaccharide(LPS)-induced vicious transformation of cervical epithelial cells[J]. Bioengineered, 2021, 12(1):4995-5003. doi: 10.1080/21655979.2021.1957750.
|
[13] |
Xue J, Wang Y, Chen C, et al. Effects of Th17 cells and IL-17 in the progression of cervical carcinogenesis with high-risk human papillomavirus infection[J]. Cancer Med, 2018, 7(2):297-306. doi: 10.1002/cam4.1279.
|
[14] |
Long T, Long L, Chen Y, et al. Severe cervical inflammation and high-grade squamous intraepithelial lesions: a cross-sectional study[J]. Arch Gynecol Obstet, 2021, 303(2):547-556. doi: 10.1007/s00404-020-05804-y.
|
[15] |
Shen XH, Liu SH. Human papillomavirus genotypes associated with mucopurulent cervicitis and cervical cancer in Hangzhou, China[J]. Asian Pac J Cancer Prev, 2013, 14(6):3603-3606. doi: 10.7314/apjcp.2013.14.6.3603.
|