Journal of International Obstetrics and Gynecology ›› 2023, Vol. 50 ›› Issue (2): 211-215.doi: 10.12280/gjfckx.20220961
• Research on Gynecological Malignancies: Review • Previous Articles Next Articles
LUO Yan, SUN Ge-ge, HAN Li-ting, LI Xin()
Received:
2022-11-20
Published:
2023-04-15
Online:
2023-04-24
Contact:
LI Xin, E-mail: LUO Yan, SUN Ge-ge, HAN Li-ting, LI Xin. Research Advances in the Application of siRNA Therapy in Gynecologic Tumors[J]. Journal of International Obstetrics and Gynecology, 2023, 50(2): 211-215.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 1(1):7-33. doi: 10.3322/caac.21654.
doi: 10.3322/caac.21654 |
[2] |
Adams D, Gonzalez-Duarte A, O′Riordan WD, et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis[J]. N Engl J Med, 2018, 379(1):11-21. doi: 10.1056/NEJMoa1716153.
doi: 10.1056/NEJMoa1716153 |
[3] |
Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669):806-811. doi: 10.1038/35888.
doi: 10.1038/35888 |
[4] |
Sajid MI, Moazzam M, Kato S, et al. Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside[J]. Pharmaceuticals (Basel), 2020, 13(10):294. doi: 10.3390/ph13100294.
doi: 10.3390/ph13100294 |
[5] |
Chen J, Zhao S, Tan W, et al. Attenuated Salmonella carrying plasmid co-expressing HPV16 L1 and siRNA-E6 for cervical cancer therapy[J]. Sci Rep, 2021, 11(1):20083. doi: 10.1038/s41598-021-99425-3.
doi: 10.1038/s41598-021-99425-3 pmid: 34635698 |
[6] |
Xu C, Liu W, Hu Y, et al. Bioinspired tumor-homing nanoplatform for co-delivery of paclitaxel and siRNA-E7 to HPV-related cervical malignancies for synergistic therapy[J]. Theranostics, 2020, 10(7):3325-3339. doi: 10.7150/thno.41228.
doi: 10.7150/thno.41228 pmid: 32194871 |
[7] |
Singh MS, Ramishetti S, Landesman-Milo D, et al. Therapeutic Gene Silencing Using Targeted Lipid Nanoparticles in Metastatic Ovarian Cancer[J]. Small, 2021, 17(19):e2100287. doi: 10.1002/smll.202100287.
doi: 10.1002/smll.202100287 |
[8] |
Xia Y, Tang G, Wang C, et al. Functionalized selenium nanoparticles for targeted siRNA delivery silence Derlin1 and promote antitumor efficacy against cervical cancer[J]. Drug Deliv, 2020, 27(1):15-25. doi: 10.1080/10717544.2019.1667452.
doi: 10.1080/10717544.2019.1667452 pmid: 31830840 |
[9] |
Wang C, Xia Y, Huo S, et al. Silencing of MEF2D by siRNA Loaded Selenium Nanoparticles for Ovarian Cancer Therapy[J]. Int J Nanomedicine, 2020, 15:9759-9770. doi: 10.2147/IJN.S270441.
doi: 10.2147/IJN.S270441 |
[10] |
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6):394-424. doi: 10.3322/caac.21492.
doi: 10.3322/caac.21492 |
[11] |
Zhao S, Huang L, Basu P, et al. Cervical cancer burden, status of implementation and challenges of cervical cancer screening in Association of Southeast Asian Nations (ASEAN) countries[J]. Cancer Lett, 2022, 525:22-32. doi: 10.1016/j.canlet.2021.10.036.
doi: 10.1016/j.canlet.2021.10.036 |
[12] |
Bian S, Zhao Y, Li F, et al. Knockdown of p62/sequestosome enhances ginsenoside Rh2-induced apoptosis in cervical cancer HeLa cells with no effect on autophagy[J]. Biosci Biotechnol Biochem, 2021, 85(5):1097-1103. doi: 10.1093/bbb/zbab019.
doi: 10.1093/bbb/zbab019 |
[13] |
Meiners A, Bäcker S, Hadrović I, et al. Specific inhibition of the Survivin-CRM1 interaction by peptide-modified molecular tweezers[J]. Nat Commun, 2021, 12(1):1505. doi: 10.1038/s41467-021-21753-9.
doi: 10.1038/s41467-021-21753-9 pmid: 33686072 |
[14] |
Mikulandra M, Kobescak A, Verillaud B, et al. Radio-sensitization of head and neck cancer cells by a combination of poly(I:C) and cisplatin through downregulation of survivin and c-IAP2[J]. Cell Oncol(Dordr), 2019, 42(1):29-40. doi: 10.1007/s13402-018-0403-7.
doi: 10.1007/s13402-018-0403-7 |
[15] |
Zhou J, Guo X, Chen W, et al. Targeting survivin sensitizes cervical cancer cells to radiation treatment[J]. Bioengineered, 2020, 11(1):130-140. doi: 10.1080/21655979.2020.1717297.
doi: 10.1080/21655979.2020.1717297 pmid: 31959045 |
[16] |
Xi M, Tang W. Knockdown of Ezrin inhibited migration and invasion of cervical cancer cells in vitro[J]. Int J Immunopathol Pharmacol, 2020, 34: 2058738420930899. doi: 10.1177/2058738420930899.
doi: 10.1177/2058738420930899 |
[17] |
Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: Evolution of management in the era of precision medicine[J]. CA Cancer J Clin, 2019, 69(4):280-304. doi: 10.3322/caac.21559.
doi: 10.3322/caac.21559 |
[18] |
Zhang X, Wang LL, Wang B, et al. Effect of siRNA-induced Atg7 gene silencing on the sensitivity of ovarian cancer SKOV3 cells to cisplatin[J]. Am J Transl Res, 2020, 12(5):2052-2061.
pmid: 32509199 |
[19] |
Reyes-González JM, Quiñones-Díaz BI, Santana Y, et al. Downstream Effectors of ILK in Cisplatin-Resistant Ovarian Cancer[J]. Cancers (Basel), 2020, 12(4):880. doi: 10.3390/cancers12040880.
doi: 10.3390/cancers12040880 |
[20] |
Löblein MT, Falke I, Eich HT, et al. Dual Knockdown of Musashi RNA-Binding Proteins MSI-1 and MSI-2 Attenuates Putative Cancer Stem Cell Characteristics and Therapy Resistance in Ovarian Cancer Cells[J]. Int J Mol Sci, 2021, 22(21):11502. doi: 10.3390/ijms222111502.
doi: 10.3390/ijms222111502 |
[21] |
Troschel FM, Palenta H, Borrmann K, et al. Knockdown of the prognostic cancer stem cell marker Musashi-1 decreases radio-resistance while enhancing apoptosis in hormone receptor-positive breast cancer cells via p21WAF1/CIP1[J]. J Cancer Res Clin Oncol, 2021, 147(11):3299-3312. doi: 10.1007/s00432-021-03743-y.
doi: 10.1007/s00432-021-03743-y pmid: 34291358 |
[22] |
Troschel FM, Minte A, Ismail YM, et al. Knockdown of Musashi RNA Binding Proteins Decreases Radioresistance but Enhances Cell Motility and Invasion in Triple-Negative Breast Cancer[J]. Int J Mol Sci, 2020, 21(6): 2169. doi: 10.3390/ijms21062169.
doi: 10.3390/ijms21062169 |
[23] |
Ghareghomi S, Ahmadian S, Zarghami N, et al. hTERT-molecular targeted therapy of ovarian cancer cells via folate-functionalized PLGA nanoparticles co-loaded with MNPs/siRNA/wortmannin[J]. Life Sci, 2021, 277:119621. doi: 10.1016/j.lfs.2021.119621.
doi: 10.1016/j.lfs.2021.119621 |
[24] |
Braun MM, Overbeek-Wager EA, Grumbo RJ. Diagnosis and Management of Endometrial Cancer[J]. Am Fam Physician, 2016, 93(6):468-474.
pmid: 26977831 |
[25] |
Makker V, MacKay H, Ray-Coquard I, et al. Endometrial cancer[J]. Nat Rev Dis Primers, 2021, 7(1):88. doi: 10.1038/s41572-021-00324-8.
doi: 10.1038/s41572-021-00324-8 pmid: 34887451 |
[26] |
Suzuki H, Boki H, Kamijo H, et al. YKL-40 Promotes Proliferation of Cutaneous T-Cell Lymphoma Tumor Cells through Extracellular Signal-Regulated Kinase Pathways[J]. J Invest Dermatol, 2020, 140(4):860-868.e3. doi: 10.1016/j.jid.2019.09.007.
doi: S0022-202X(19)33298-1 pmid: 31622598 |
[27] |
Chen HY, Zhou ZY, Luo YL, et al. Knockdown of YKL-40 inhibits angiogenesis through regulation of VEGF/VEGFR2 and ERK1/2 signaling in endometrial cancer[J]. Cell Biol Int, 2021, 45(12):2557-2566. doi: 10.1002/cbin.11699.
doi: 10.1002/cbin.11699 |
[28] |
Luo Q, Fan J, Li L. Silencing YKL-40 gene can inhibit inflammatory factor expression and affects the effect of THP-1 cells on endometrial cancer[J]. Arch Gynecol Obstet, 2022, 305(2):467-473. doi: 10.1007/s00404-021-06194-5.
doi: 10.1007/s00404-021-06194-5 |
[29] |
Falke I, Troschel FM, Palenta H, et al. Knockdown of the stem cell marker Musashi-1 inhibits endometrial cancer growth and sensitizes cells to radiation[J]. Stem Cell Res Ther, 2022, 13(1):212. doi: 10.1186/s13287-022-02891-3.
doi: 10.1186/s13287-022-02891-3 pmid: 35619161 |
[30] |
Wei M, Zhang Y, Yang X, et al. Claudin-2 promotes colorectal cancer growth and metastasis by suppressing NDRG1 transcription[J]. Clin Transl Med, 2021, 11(12):e667. doi: 10.1002/ctm2.667.
doi: 10.1002/ctm2.667 pmid: 34965023 |
[31] |
Okada T, Konno T, Kohno T, et al. Possibility of Targeting Claudin-2 in Therapy for Human Endometrioid Endometrial Carcinoma[J]. Reprod Sci, 2020, 27(11):2092-2103. doi: 10.1007/s43032-020-00230-6.
doi: 10.1007/s43032-020-00230-6 pmid: 32548807 |
[32] |
Zhang Y, Xie X, Yeganeh PN, et al. Immunotherapy for breast cancer using EpCAM aptamer tumor-targeted gene knockdown[J]. Proc Natl Acad Sci U S A, 2021, 118(9):e2022830118. doi: 10.1073/pnas.2022830118.
doi: 10.1073/pnas.2022830118 |
[33] |
Meng Z, Lu M. RNA Interference-Induced Innate Immunity, Off-Target Effect, or Immune Adjuvant?[J]. Front Immunol, 2017, 8:331. doi: 10.3389/fimmu.2017.00331.
doi: 10.3389/fimmu.2017.00331 pmid: 28386261 |
[34] |
Lin X, Ruan X, Anderson MG, et al. siRNA-mediated off-target gene silencing triggered by a 7 nt complementation[J]. Nucleic Acids Res, 2005, 33(14):4527-4535. doi: 10.1093/nar/gki762.
doi: 10.1093/nar/gki762 pmid: 16091630 |
[1] | ZHANG Hao-sheng, WEI Fang. Research Progress of Nectin-4 in Gynecologic Malignancies [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 165-168. |
[2] | GUO Xi, WEI Jia, YANG Yong-xiu. Hormonal Pathways and Regulatory Factors That Lead to Endometrial Disease [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 395-400. |
[3] | WU Xiao-li, LIU Kai-jiang. The TCGA Molecular Classification and New Research Progress in the Treatment of Endometrial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 247-252. |
[4] | GUO Xin, ZHANG Jian-nan, GUO Nan, NING Wen-ting, SHANG Hai-xia. Advances in the Application of Engineered Exosomes in the Treatment of Drug Resistance in Gynecological Tumors [J]. Journal of International Obstetrics and Gynecology, 2024, 51(1): 42-46. |
[5] | GUO Jing-jing, ZHANG Yun-feng, WANG Yue. The Combined Application of PARP Inhibitor and PD-1/PD-L1 Inhibitor in the Treatment of Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 568-572. |
[6] | ZHENG Jia-hui, LIN Yan, CHEN Qiao-fen, WANG Xue-feng. Research Progress of Targeting Tumor-Associated Macrophages Therapy for Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2022, 49(6): 621-625. |
[7] | XIE Yun-kai, KONG Wei-min. Research Progress on Molecular Characteristics and Targeted Therapy of Uterine Serous Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2022, 49(3): 278-281. |
[8] | LI Li, LU Xiao-shan, XIN Jia-chun, WANG Xiao-hui. Combination of Immunity and Targeted Therapy: A New Perspective on the Treatment of Endometrial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2022, 49(1): 5-9. |
[9] | CHU Hui-hui, LIU Qian. Research Progress in Clinical Treatment of Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2021, 48(4): 443-447. |
[10] | CHEN Zhen-bo, MENG Yuan-guang. Research Progress of BRCA Gene and Diagnosis and Treatment of Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2021, 48(2): 144-148. |
[11] | XIN Yu-qi, TIAN Lei, WANG Xiao-hui. Research Progress on the Role of Long Non-Coding RNA in the Occurrence and Development of Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2021, 48(1): 41-46. |
[12] | ZHOU Lin-zhi, CHEN Xiu-hui, KONG Xian-chao. The Intracrinology and Targeted Therapy of Endometrial Cancer [J]. Journal of International Obstetrics and Gynecology, 2020, 47(6): 632-636. |
[13] | YU Yi;XU Cong-jian. Targeted Therapies Advances in Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2012, 39(2): 152-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||