Journal of International Obstetrics and Gynecology ›› 2023, Vol. 50 ›› Issue (3): 256-260.doi: 10.12280/gjfckx.20221082
• Gynecological Disease & Related Research: Review • Previous Articles Next Articles
Received:
2022-12-29
Published:
2023-06-15
Online:
2023-06-27
Contact:
ZHANG Ning, E-mail: WANG Lei, ZHANG Ning. The Impact of Intestinal Microbiota Imbalance on the Polycystic Ovary Syndrome[J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 256-260.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Adak A, Khan MR. An insight into gut microbiota and its functionalities[J]. Cell Mol Life Sci, 2019, 76(3):473-493. doi: 10.1007/s00018-018-2943-4.
doi: 10.1007/s00018-018-2943-4 pmid: 30317530 |
[2] |
Durack J, Lynch SV. The gut microbiome: Relationships with disease and opportunities for therapy[J]. J Exp Med, 2019, 216(1):20-40. doi: 10.1084/jem.20180448.
doi: 10.1084/jem.20180448 |
[3] |
Tremellen K, Pearce K. Dysbiosis of Gut Microbiota (DOGMA)--a novel theory for the development of Polycystic Ovarian Syndrome[J]. Med Hypotheses, 2012, 79(1):104-112. doi: 10.1016/j.mehy.2012.04.016.
doi: 10.1016/j.mehy.2012.04.016 pmid: 22543078 |
[4] |
Jobira B, Frank DN, Pyle L, et al. Obese Adolescents With PCOS Have Altered Biodiversity and Relative Abundance in Gastrointestinal Microbiota[J]. J Clin Endocrinol Metab, 2020, 105(6):e2134-e2144. doi: 10.1210/clinem/dgz263.
doi: 10.1210/clinem/dgz263 |
[5] |
Cristofori F, Dargenio VN, Dargenio C, et al. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body[J]. Front Immunol, 2021, 12:578386. doi: 10.3389/fimmu.2021.578386.
doi: 10.3389/fimmu.2021.578386 |
[6] |
Chu W, Han Q, Xu J, et al. Metagenomic analysis identified microbiome alterations and pathological association between intestinal microbiota and polycystic ovary syndrome[J]. Fertil Steril, 2020, 113(6):1286-1298.e4. doi: 10.1016/j.fertnstert.2020.01.027.
doi: S0015-0282(20)30028-5 pmid: 32482258 |
[7] |
Zhang J, Sun Z, Jiang S, et al. Probiotic Bifidobacterium lactis V9 Regulates the Secretion of Sex Hormones in Polycystic Ovary Syndrome Patients through the Gut-Brain Axis[J]. mSystems, 2019, 4(2):e00017-19. doi: 10.1128/mSystems.00017-19.
doi: 10.1128/mSystems.00017-19 |
[8] |
Qi X, Yun C, Sun L, et al. Gut microbiota-bile acid-interleukin-22 axis orchestrates polycystic ovary syndrome[J]. Nat Med, 2019, 25(8):1225-1233. doi: 10.1038/s41591-019-0509-0.
doi: 10.1038/s41591-019-0509-0 pmid: 31332392 |
[9] |
Kusamoto A, Harada M, Azhary J, et al. Temporal relationship between alterations in the gut microbiome and the development of polycystic ovary syndrome-like phenotypes in prenatally androgenized female mice[J]. FASEB J, 2021, 35(11):e21971. doi: 10.1096/fj.202101051R.
doi: 10.1096/fj.202101051R |
[10] |
He F, Li Y. The gut microbial composition in polycystic ovary syndrome with insulin resistance: findings from a normal-weight population[J]. J Ovarian Res, 2021, 14(1):50. doi: 10.1186/s13048-021-00799-9.
doi: 10.1186/s13048-021-00799-9 pmid: 33773586 |
[11] |
Lindheim L, Bashir M, Münzker J, et al. Alterations in Gut Microbiome Composition and Barrier Function Are Associated with Reproductive and Metabolic Defects in Women with Polycystic Ovary Syndrome (PCOS): A Pilot Study[J]. PLoS One, 2017, 12(1):e0168390. doi: 10.1371/journal.pone.0168390.
doi: 10.1371/journal.pone.0168390 |
[12] |
Zhai L, Wu J, Lam YY, et al. Gut-Microbial Metabolites, Probiotics and Their Roles in Type 2 Diabetes[J]. Int J Mol Sci, 2021, 22(23):12846. doi: 10.3390/ijms222312846.
doi: 10.3390/ijms222312846 |
[13] |
Mathur B, Shajahan A, Arif W, et al. Nuclear receptors FXR and SHP regulate protein N-glycan modifications in the liver[J]. Sci Adv, 2021, 7(17):eabf4865. doi: 10.1126/sciadv.abf4865.
doi: 10.1126/sciadv.abf4865 |
[14] |
LeValley SL, Tomaro-Duchesneau C, Britton RA. Degradation of the Incretin Hormone Glucagon-Like Peptide-1 (GLP-1) by Enterococcus faecalis Metalloprotease GelE[J]. mSphere, 2020, 5(1):e00585-19. doi: 10.1128/mSphere.00585-19.
doi: 10.1128/mSphere.00585-19 |
[15] |
Yang PK, Chou CH, Huang CC, et al. Obesity alters ovarian folliculogenesis through disrupted angiogenesis from increased IL-10 production[J]. Mol Metab, 2021, 49:101189. doi: 10.1016/j.molmet.2021.101189.
doi: 10.1016/j.molmet.2021.101189 |
[16] |
Zhou L, Ni Z, Cheng W, et al. Characteristic gut microbiota and predicted metabolic functions in women with PCOS[J]. Endocr Connect, 2020, 9(1):63-73. doi: 10.1530/EC-19-0522.
doi: 10.1530/EC-19-0522 pmid: 31972546 |
[17] |
Zhou L, Ni Z, Yu J, et al. Correlation Between Fecal Metabolomics and Gut Microbiota in Obesity and Polycystic Ovary Syndrome[J]. Front Endocrinol(Lausanne), 2020, 11:628. doi: 10.3389/fendo.2020.00628.
doi: 10.3389/fendo.2020.00628 |
[18] |
Petersen C, Bell R, Klag KA, et al. T cell-mediated regulation of the microbiota protects against obesity[J]. Science, 2019, 365(6451):eaat9351. doi: 10.1126/science.aat9351.
doi: 10.1126/science.aat9351 |
[19] |
Wang D, Liu CD, Tian ML, et al. Propionate promotes intestinal lipolysis and metabolic benefits via AMPK/LSD1 pathway in mice[J]. J Endocrinol, 2019 Sep 1:JOE-19-0188.R1. doi: 10.1530/JOE-19-0188.
doi: 10.1530/JOE-19-0188 |
[20] |
Yu C, Liu S, Chen L, et al. Effect of exercise and butyrate supplementation on microbiota composition and lipid metabolism[J]. J Endocrinol, 2019, 243(2):125-135. doi: 10.1530/JOE-19-0122.
doi: 10.1530/JOE-19-0122 pmid: 31454784 |
[21] |
Salehi M, Purnell JQ. The Role of Glucagon-Like Peptide-1 in Energy Homeostasis[J]. Metab Syndr Relat Disord, 2019, 17(4):183-191. doi: 10.1089/met.2018.0088.
doi: 10.1089/met.2018.0088 |
[22] |
Bai X, Ma J, Wu X, et al. Impact of Visceral Obesity on Structural and Functional Alterations of Gut Microbiota in Polycystic Ovary Syndrome (PCOS): A Pilot Study Using Metagenomic Analysis[J]. Diabetes Metab Syndr Obes, 2023, 16:1-14. doi: 10.2147/DMSO.S388067.
doi: 10.2147/DMSO.S388067 |
[23] |
Zeng X, Zhong Q, Li M, et al. Androgen increases klotho expression via the androgen receptor-mediated pathway to induce GCs apoptosis[J]. J Ovarian Res, 2023, 16(1):10. doi: 10.1186/s13048-022-01087-w.
doi: 10.1186/s13048-022-01087-w pmid: 36641458 |
[24] |
Ervin SM, Li H, Lim L, et al. Gut microbial β-glucuronidases reactivate estrogens as components of the estrobolome that reactivate estrogens[J]. J Biol Chem, 2019, 294(49):18586-18599. doi: 10.1074/jbc.RA119.010950.
doi: 10.1074/jbc.RA119.010950 pmid: 31636122 |
[25] |
Barroso A, Santos-Marcos JA, Perdices-Lopez C, et al. Neonatal exposure to androgens dynamically alters gut microbiota architecture[J]. J Endocrinol, 2020, 247(1):69-85. doi: 10.1530/JOE-20-0277.
doi: 10.1530/JOE-20-0277 pmid: 32755996 |
[26] |
Geng S, Yang L, Cheng F, et al. Gut Microbiota Are Associated With Psychological Stress-Induced Defections in Intestinal and Blood-Brain Barriers[J]. Front Microbiol, 2019, 10:3067. doi: 10.3389/fmicb.2019.03067.
doi: 10.3389/fmicb.2019.03067 pmid: 32010111 |
[27] |
Doden HL, Pollet RM, Mythen SM, et al. Structural and biochemical characterization of 20β-hydroxysteroid dehydrogenase from Bifidobacterium adolescentis strain L2-32[J]. J Biol Chem, 2019, 294(32):12040-12053. doi: 10.1074/jbc.RA119.009390.
doi: 10.1074/jbc.RA119.009390 |
[28] |
Wang X, Xu T, Liu R, et al. High-Fiber Diet or Combined With Acarbose Alleviates Heterogeneous Phenotypes of Polycystic Ovary Syndrome by Regulating Gut Microbiota[J]. Front Endocrinol (Lausanne), 2021, 12:806331. doi: 10.3389/fendo.2021.806331.
doi: 10.3389/fendo.2021.806331 |
[29] |
Li T, Zhang T, Gao H, et al. Tempol ameliorates polycystic ovary syndrome through attenuating intestinal oxidative stress and modulating of gut microbiota composition-serum metabolites interaction[J]. Redox Biol, 2021, 41:101886. doi: 10.1016/j.redox.2021.101886.
doi: 10.1016/j.redox.2021.101886 |
[30] |
Torres PJ, Ho BS, Arroyo P, et al. Exposure to a Healthy Gut Microbiome Protects Against Reproductive and Metabolic Dysregulation in a PCOS Mouse Model[J]. Endocrinology, 2019, 160(5):1193-1204. doi: 10.1210/en.2019-00050.
doi: 10.1210/en.2019-00050 pmid: 30924862 |
[31] |
Huang J, Chen P, Xiang Y, et al. Gut microbiota dysbiosis-derived macrophage pyroptosis causes polycystic ovary syndrome via steroidogenesis disturbance and apoptosis of granulosa cells[J]. Int Immunopharmacol, 2022, 107:108717. doi: 10.1016/j.intimp.2022.108717.
doi: 10.1016/j.intimp.2022.108717 |
[1] | XU Shu-ying, XU Hai-peng, WANG Li-na, ZHANG Yang. Relationship between Zinc and Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 217-221. |
[2] | YAN Hui-bo, ZHANG Lin. Analysis of the Disease Burden and Projections of Polycystic Ovary Syndrome in China and Globally from 1990 to 2021 [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 228-233. |
[3] | ZHANG Dong, WANG Zheng, LI Kai, BIAN Wen-li, GAO Zhi-hua. A Case of Severe Spontaneous Ovarian Hyperstimulation Syndrome in Non-Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 79-83. |
[4] | XI Xin-xin, GUO Hong, LI Shan, FENG Di, LIU Duo-duo. Effect of Preoperative Oral Carbohydrate on Enhanced Recovery after Cesarean Section [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 616-619. |
[5] | HU Die, REN Jia-jie, LIU Jia-ning, FENG Xiao-ling. Mechanism Study of MAPK Pathway in PCOS and Monomeric Treatment of Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 684-691. |
[6] | LI Dong-nan, XIANG Rong, WANG Hai-yang, SUN Miao. Regulatory Mechanism of Ovarian Granulosa Cell Apoptosis in Polycystic Ovary Syndrome with Progress in Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 692-697. |
[7] | LI Chen-xi, FAN Meng-xiao, WU Lin-ling, DOU Zhen, JIA Jia, SUN Ya-xuan. Advances in Research on Neuroendocrine Disorders Induced by Hyperandrogenism in Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 698-702. |
[8] | YIN Yu-xin, WANG Chang-he. A Case Report of Complete Androgen Insensitivity Syndrome Complicated with Dysgerminoma [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 392-394. |
[9] | SUN Yi-wen, XIONG Ke, ZHANG Zi-xu, WENG Ya-jing, WANG Yong. The Effect of Bisphenol A on the Pathogenesis of Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 601-605. |
[10] | LI Zhen-ying, SUN Xiao-tong, XING Guang-yang, LI Jing-jing, LIU Ting-ting, ZHANG Yi-fan. Research Progress on Sphingolipid Metabolism and Benign and Malignant Gynecological Diseases [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 649-654. |
[11] | XU Hui, XIE Xiu-zhen. Research Progress of Negative Emotion in Patients with Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 530-534. |
[12] | KOU Li-hui, SONG Dian-rong, GUO Jie. Effects of Negative Emotion on Infertility Patients with Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 535-539. |
[13] | GAO Ya, LU Di, SONG Dian-rong. Role of Anti- Müllerian Hormone in Pathogenesis, Diagnosis and Treatment of Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 540-544. |
[14] | CHEN Chen, TANG Zhong-yun, LI Min, ZHANG Ying-chun. NR5A1 Mutation in 46,XY Disorders of Sex Development Combined with Obesity and Hyperinsulinemia: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 271-274. |
[15] | ZHANG Yu-lin, FENG Xiao-ling. Research Progress on the Regulatory Mechanism of Autophagy on Ovarian Microenvironment [J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 337-342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||