[1] |
Wu Q, Gao J, Bai D, et al. The prevalence of polycystic ovarian syndrome in Chinese women: a meta-analysis[J]. Ann Palliat Med, 2021, 10(1):74-87. doi: 10.21037/apm-20-1893.
pmid: 33545750
|
[2] |
Stańczak NA, Grywalska E, Dudzińska E. The latest reports and treatment methods on polycystic ovary syndrome[J]. Ann Med, 2024, 56(1):2357737. doi: 10.1080/07853890.2024.2357737.
|
[3] |
Singh S, Pal N, Shubham S, et al. Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics[J]. J Clin Med, 2023, 12(4):1454. doi: 10.3390/jcm12041454.
|
[4] |
Glendining KA, Campbell RE. Recent advances in emerging PCOS therapies[J]. Curr Opin Pharmacol, 2023, 68:102345. doi: 10.1016/j.coph.2022.102345.
|
[5] |
Ye W, Xie T, Song Y, et al. The role of androgen and its related signals in PCOS[J]. J Cell Mol Med, 2021, 25(4):1825-1837. doi: 10.1111/jcmm.16205.
pmid: 33369146
|
[6] |
Zuloaga DG, Lafrican JJ, Zuloaga KL. Androgen regulation of behavioral stress responses and the hypothalamic-pituitary-adrenal axis[J]. Horm Behav, 2024, 162:105528. doi: 10.1016/j.yhbeh.2024.105528.
|
[7] |
Silva M, Campbell RE. Polycystic Ovary Syndrome and the Neuroendocrine Consequences of Androgen Excess[J]. Compr Physiol, 2022, 12(2):3347-3369. doi: 10.1002/cphy.c210025.
pmid: 35578968
|
[8] |
Moore AM, Lohr DB, Coolen LM, et al. Prenatal Androgen Exposure Alters KNDy Neurons and Their Afferent Network in a Model of Polycystic Ovarian Syndrome[J]. Endocrinology, 2021, 162(11):bqab158. doi: 10.1210/endocr/bqab158.
|
[9] |
Xu G, Zhao X, Li Z, et al. Effects of electroacupuncture on the kisspeptin-gonadotropin-releasing hormone (GnRH) /luteinizing hormone (LH) neural circuit abnormalities and androgen receptor expression of kisspeptin/neurokinin B/dynorphin neurons in PCOS rats[J]. J Ovarian Res, 2023, 16(1):15. doi: 10.1186/s13048-022-01078-x.
pmid: 36650561
|
[10] |
Abbott DH. Neuronal androgen receptor: Molecular gateway to polycystic ovary syndrome?[J]. Proc Natl Acad Sci U S A, 2017, 114(16):4045-4047. doi: 10.1073/pnas.1703436114.
|
[11] |
Garg A, Patel B, Abbara A, et al. Treatments targeting neuroendocrine dysfunction in polycystic ovary syndrome (PCOS)[J]. Clin Endocrinol(Oxf), 2022, 97(2):156-164. doi: 10.1111/cen.14704.
|
[12] |
Nagae M, Uenoyama Y, Okamoto S, et al. Direct evidence that KNDy neurons maintain gonadotropin pulses and folliculogenesis as the GnRH pulse generator[J]. Proc Natl Acad Sci U S A, 2021, 118(5):e2009156118. doi: 10.1073/pnas.2009156118.
|
[13] |
Szeliga A, Rudnicka E, Maciejewska-Jeske M, et al. Neuroendocrine Determinants of Polycystic Ovary Syndrome[J]. Int J Environ Res Public Health, 2022, 19(5):3089. doi: 10.3390/ijerph19053089.
|
[14] |
Markantes GK, Panagodimou E, Koika V, et al. Placental mRNA Expression of Neurokinin B Is Increased in PCOS Pregnancies with Female Offspring[J]. Biomedicines, 2024, 12(2):334. doi: 10.3390/biomedicines12020334.
|
[15] |
Gurule S, Sustaita-Monroe J, Padmanabhan V, et al. Developmental programming of the neuroendocrine axis by steroid hormones: Insights from the sheep model of PCOS[J]. Front Endocrinol(Lausanne), 2023, 14:1096187. doi: 10.3389/fendo.2023.1096187.
|
[16] |
McCarthy EA, Dischino D, Maguire C, et al. Inhibiting Kiss1 Neurons With Kappa Opioid Receptor Agonists to Treat Polycystic Ovary Syndrome and Vasomotor Symptoms[J]. J Clin Endocrinol Metab, 2022, 107(1):e328-e347. doi: 10.1210/clinem/dgab602.
|
[17] |
王莹莹, 郑洲, 张秀明. 高浓度雄激素诱导KNDy神经内分泌紊乱在多囊卵巢综合征发病机制中的研究进展[J]. 国际妇产科学杂志, 2022, 49(5):497-501. doi: 10.12280/gjfckx.20220496.
|
[18] |
Moore AM, Novak AG, Lehman MN. KNDy Neurons of the Hypothalamus and Their Role in GnRH Pulse Generation: an Update[J]. Endocrinology, 2023, 165(2):bqad194. doi: 10.1210/endocr/bqad194.
|
[19] |
Moore AM. Impaired steroid hormone feedback in polycystic ovary syndrome: Evidence from preclinical models for abnormalities within central circuits controlling fertility[J]. Clin Endocrinol(Oxf), 2022, 97(2):199-207. doi: 10.1111/cen.14711.
|
[20] |
Ye Z, Zhang C, Wang S, et al. Amino acid signatures in relation to polycystic ovary syndrome and increased risk of different metabolic disturbances[J]. Reprod Biomed Online, 2022, 44(4):737-746. doi: 10.1016/j.rbmo.2021.11.012.
|
[21] |
Walters KA, Gilchrist RB, Ledger WL, et al. New Perspectives on the Pathogenesis of PCOS: Neuroendocrine Origins[J]. Trends Endocrinol Metab, 2018, 29(12):841-852. doi: 10.1016/j.tem.2018.08.005.
|
[22] |
Porter DT, Moore AM, Cobern JA, et al. Prenatal Testosterone Exposure Alters GABAergic Synaptic Inputs to GnRH and KNDy Neurons in a Sheep Model of Polycystic Ovarian Syndrome[J]. Endocrinology, 2019, 160(11):2529-2542. doi: 10.1210/en.2019-00137.
pmid: 31415088
|
[23] |
Sucquart IE, Coyle C, Rodriguez Paris V, et al. Investigating GABA Neuron-Specific Androgen Receptor Knockout in two Hyperandrogenic Models of PCOS[J]. Endocrinology, 2024, 165(7):bqae060. doi: 10.1210/endocr/bqae060.
|
[24] |
Childs GV, Odle AK, MacNicol MC, et al. The Importance of Leptin to Reproduction[J]. Endocrinology, 2021, 162(2):bqaa204. doi: 10.1210/endocr/bqaa204.
|
[25] |
Nohara K, Zhang Y, Waraich RS, et al. Early-life exposure to testosterone programs the hypothalamic melanocortin system[J]. Endocrinology, 2011, 152(4):1661-1669. doi: 10.1210/en.2010-1288.
pmid: 21303958
|
[26] |
Cara AL, Burger LL, Beekly BG, et al. Deletion of Androgen Receptor in LepRb Cells Improves Estrous Cycles in Prenatally Androgenized Mice[J]. Endocrinology, 2023, 164(3):bqad015. doi: 10.1210/endocr/bqad015.
|
[27] |
Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies[J]. Mol Metab, 2020, 35:100937. doi: 10.1016/j.molmet.2020.01.001.
|
[28] |
Zhu B, Chen Y, Xu F, et al. Androgens impair β-cell function in a mouse model of polycystic ovary syndrome by activating endoplasmic reticulum stress[J]. Endocr Connect, 2021, 10(3):265-272. doi: 10.1530/EC-20-0608.
pmid: 33543730
|
[29] |
Yuan C, Huang WQ, Guo JH, et al. Involvement of kisspeptin in androgen-induced hypothalamic endoplasmic reticulum stress and its rescuing effect in PCOS rats[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(12):166242. doi: 10.1016/j.bbadis.2021.166242.
|