Journal of International Obstetrics and Gynecology ›› 2023, Vol. 50 ›› Issue (1): 109-115.doi: 10.12280/gjfckx.20220804
• Gynecological Diseases & Related Research: Review • Previous Articles Next Articles
SUN Chang, PAN Zi-meng, ZHAO Shan-shan, LI Jing, KUANG Hong-ying△()
Received:
2022-10-05
Published:
2023-02-15
Online:
2023-03-02
Contact:
KUANG Hong-ying, E-mail: SUN Chang, PAN Zi-meng, ZHAO Shan-shan, LI Jing, KUANG Hong-ying. Regulation Mechanism of Hypothalamic Inflammation in Polycystic Ovary Syndrome[J]. Journal of International Obstetrics and Gynecology, 2023, 50(1): 109-115.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment[J]. Nat Rev Endocrinol, 2018, 14(5):270-284. doi: 10.1038/nrendo.2018.24.
doi: 10.1038/nrendo.2018.24 pmid: 29569621 |
[2] |
Steegers-Theunissen R, Wiegel RE, Jansen PW, et al. Polycystic Ovary Syndrome: A Brain Disorder Characterized by Eating Problems Originating during Puberty and Adolescence[J]. Int J Mol Sci, 2020, 21(21):8211. doi: 10.3390/ijms21218211.
doi: 10.3390/ijms21218211 |
[3] |
Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance[J]. J Endocrinol, 2014, 220(2):T25-46. doi: 10.1530/JOE-13-0398.
doi: 10.1530/JOE-13-0398 |
[4] |
Yoo ES, Yu J, Sohn JW. Neuroendocrine control of appetite and metabolism[J]. Exp Mol Med, 2021, 53(4):505-516. doi: 10.1038/s12276-021-00597-9.
doi: 10.1038/s12276-021-00597-9 |
[5] |
Barlampa D, Bompoula MS, Bargiota A, et al. Hypothalamic Inflammation as a Potential Pathophysiologic Basis for the Heterogeneity of Clinical, Hormonal, and Metabolic Presentation in PCOS[J]. Nutrients, 2021, 13(2):520. doi: 10.3390/nu13020520.
doi: 10.3390/nu13020520 |
[6] |
Dearden L, Buller S, Furigo IC, et al. Maternal obesity causes fetal hypothalamic insulin resistance and disrupts development of hypothalamic feeding pathways[J]. Mol Metab, 2020, 42:101079. doi: 10.1016/j.molmet.2020.101079.
doi: 10.1016/j.molmet.2020.101079 |
[7] |
Qin C, Li J, Tang K. The Paraventricular Nucleus of the Hypothalamus: Development, Function, and Human Diseases[J]. Endocrinology, 2018, 159(9):3458-3472. doi: 10.1210/en.2018-00453.
doi: 10.1210/en.2018-00453 pmid: 30052854 |
[8] |
Cai M, Park HR, Yang EJ. Nutraceutical Interventions for Post-Traumatic Stress Disorder in Animal Models: A Focus on the Hypothalamic-Pituitary-Adrenal Axis[J]. Pharmaceuticals (Basel), 2022, 15(7):898. doi: 10.3390/ph15070898.
doi: 10.3390/ph15070898 |
[9] |
Hirschberg PR, Sarkar P, Teegala SB, et al. Ventromedial hypothalamus glucose-inhibited neurones: A role in glucose and energy homeostasis?[J]. J Neuroendocrinol, 2020, 32(1):e12773. doi: 10.1111/jne.12773.
doi: 10.1111/jne.12773 |
[10] |
Fosch A, Zagmutt S, Casals N, et al. New Insights of SF1 Neurons in Hypothalamic Regulation of Obesity and Diabetes[J]. Int J Mol Sci, 2021, 22(12):6186. doi: 10.3390/ijms22126186.
doi: 10.3390/ijms22126186 |
[11] |
Gomez-Castro F, Zappettini S, Pressey JC, et al. Convergence of adenosine and GABA signaling for synapse stabilization during development[J]. Science, 2021, 374(6568): eabk2055. doi: 10.1126/science.abk2055.
doi: 10.1126/science.abk2055 |
[12] |
Korf HW, Møller M. Arcuate nucleus, median eminence, and hypophysial pars tuberalis[J]. Handb Clin Neurol, 2021, 180:227-251. doi: 10.1016/B978-0-12-820107-7.00015-X.
doi: 10.1016/B978-0-12-820107-7.00015-X |
[13] |
Roepke TA, Sadlier NC. REPRODUCTIVE TOXICOLOGY: Impact of endocrine disruptors on neurons expressing GnRH or kisspeptin and pituitary gonadotropins[J]. Reproduction, 2021, 162(5):F131-F145. doi: 10.1530/REP-20-0612.
doi: 10.1530/REP-20-0612 pmid: 34228631 |
[14] |
Kung PH, Soriano-Mas C, Steward T. The influence of the subcortex and brain stem on overeating: How advances in functional neuroimaging can be applied to expand neurobiological models to beyond the cortex[J]. Rev Endocr Metab Disord, 2022, 23(4):719-731. doi: 10.1007/s11154-022-09720-1.
doi: 10.1007/s11154-022-09720-1 |
[15] |
Arrigoni E, Chee M, Fuller PM. To eat or to sleep: That is a lateral hypothalamic question[J]. Neuropharmacology, 2019, 154:34-49. doi: 10.1016/j.neuropharm.2018.11.017.
doi: S0028-3908(18)30853-0 pmid: 30503993 |
[16] |
Vandenbark AA, Offner H, Matejuk S, et al. Microglia and astrocyte involvement in neurodegeneration and brain cancer[J]. J Neuroinflammation, 2021, 18(1):298. doi: 10.1186/s12974-021-02355-0.
doi: 10.1186/s12974-021-02355-0 |
[17] |
Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress[J]. J Neuroinflammation, 2021, 18(1):258. doi: 10.1186/s12974-021-02309-6.
doi: 10.1186/s12974-021-02309-6 |
[18] |
Thaler JP, Yi CX, Schur EA, et al. Obesity is associated with hypothalamic injury in rodents and humans[J]. J Clin Invest, 2012, 122(1):153-162. doi: 10.1172/JCI59660.
doi: 10.1172/JCI59660 pmid: 22201683 |
[19] |
André C, Guzman-Quevedo O, Rey C, et al. Inhibiting Microglia Expansion Prevents Diet-Induced Hypothalamic and Peripheral Inflammation[J]. Diabetes, 2017, 66(4):908-919. doi: 10.2337/db16-0586.
doi: 10.2337/db16-0586 pmid: 27903745 |
[20] |
Lee I, Cooney LG, Saini S, et al. Increased odds of disordered eating in polycystic ovary syndrome: a systematic review and meta-analysis[J]. Eat Weight Disord, 2019, 24(5):787-797. doi: 10.1007/s40519-018-0533-y.
doi: 10.1007/s40519-018-0533-y |
[21] |
Gao Y, Bielohuby M, Fleming T, et al. Dietary sugars, not lipids, drive hypothalamic inflammation[J]. Mol Metab, 2017, 6(8):897-908. doi: 10.1016/j.molmet.2017.06.008.
doi: S2212-8778(17)30239-9 pmid: 28752053 |
[22] |
Sergi D, Boulestin H, Campbell FM, et al. The Role of Dietary Advanced Glycation End Products in Metabolic Dysfunction[J]. Mol Nutr Food Res, 2021, 65(1):e1900934. doi: 10.1002/mnfr.201900934.
doi: 10.1002/mnfr.201900934 |
[23] |
Valdearcos M, Douglass JD, Robblee MM, et al. Microglial Inflammatory Signaling Orchestrates the Hypothalamic Immune Response to Dietary Excess and Mediates Obesity Susceptibility[J]. Cell Metab, 2018, 27(6):1356. doi: 10.1016/j.cmet.2018.04.019.
doi: S1550-4131(18)30303-6 pmid: 29874568 |
[24] |
Benzler J, Ganjam GK, Pretz D, et al. Central inhibition of IKKβ/NF-κB signaling attenuates high-fat diet-induced obesity and glucose intolerance[J]. Diabetes, 2015, 64(6):2015-2027. doi: 10.2337/db14-0093.
doi: 10.2337/db14-0093 pmid: 25626735 |
[25] |
Serna-Rodríguez MF, Bernal-Vega S, de la Barquera J, et al. The role of damage associated molecular pattern molecules (DAMPs) and permeability of the blood-brain barrier in depression and neuroinflammation[J]. J Neuroimmunol, 2022, 371:577951. doi: 10.1016/j.jneuroim.2022.577951.
doi: 10.1016/j.jneuroim.2022.577951 |
[26] |
Cao Y, Li Z, Jiang W, et al. Reproductive functions of Kisspeptin/KISS1R Systems in the Periphery[J]. Reprod Biol Endocrinol, 2019, 17(1):65. doi: 10.1186/s12958-019-0511-x.
doi: 10.1186/s12958-019-0511-x |
[27] |
Moura-Assis A, Nogueira P, de-Lima-Junior JC, et al. TLR4-interactor with leucine-rich repeats (TRIL) is involved in diet-induced hypothalamic inflammation[J]. Sci Rep, 2021, 11(1):18015. doi: 10.1038/s41598-021-97291-7.
doi: 10.1038/s41598-021-97291-7 pmid: 34504172 |
[28] |
Navarro VM. Metabolic regulation of kisspeptin-the link between energy balance and reproduction[J]. Nat Rev Endocrinol, 2020, 16(8):407-420. doi: 10.1038/s41574-020-0363-7.
doi: 10.1038/s41574-020-0363-7 pmid: 32427949 |
[29] |
Yuan C, Huang WQ, Guo JH, et al. Involvement of kisspeptin in androgen-induced hypothalamic endoplasmic reticulum stress and its rescuing effect in PCOS rats[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(12):166242. doi: 10.1016/j.bbadis.2021.166242.
doi: 10.1016/j.bbadis.2021.166242 |
[30] |
Qiu J, Stincic TL, Bosch MA, et al. Deletion of Stim1 in Hypothalamic Arcuate Nucleus Kiss1 Neurons Potentiates Synchronous GCaMP Activity and Protects against Diet-Induced Obesity[J]. J Neurosci, 2021, 41(47):9688-9701. doi: 10.1523/JNEUROSCI.0622-21.2021.
doi: 10.1523/JNEUROSCI.0622-21.2021 pmid: 34654752 |
[31] |
Könner AC, Klöckener T, Brüning JC. Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond[J]. Physiol Behav, 2009, 97(5):632-638. doi: 10.1016/j.physbeh.2009.03.027.
doi: 10.1016/j.physbeh.2009.03.027 pmid: 19351541 |
[32] |
Yan J, Zhang H, Yin Y, et al. Obesity-and aging-induced excess of central transforming growth factor-β potentiates diabetic development via an RNA stress response[J]. Nat Med, 2014, 20(9):1001-1008. doi: 10.1038/nm.3616.
doi: 10.1038/nm.3616 |
[33] |
Ullah R, Rauf N, Nabi G, et al. Mechanistic insight into high-fat diet-induced metabolic inflammation in the arcuate nucleus of the hypothalamus[J]. Biomed Pharmacother, 2021, 142:112012. doi: 10.1016/j.biopha.2021.112012.
doi: 10.1016/j.biopha.2021.112012 pmid: 34388531 |
[34] |
Forrester SJ, Kikuchi DS, Hernandes MS, et al. Reactive Oxygen Species in Metabolic and Inflammatory Signaling[J]. Circ Res, 2018, 122(6):877-902. doi: 10.1161/CIRCRESAHA.117.311401.
doi: 10.1161/CIRCRESAHA.117.311401 pmid: 29700084 |
[35] |
Chiurazzi M, Di Maro M, Cozzolino M, et al. Mitochondrial Dynamics and Microglia as New Targets in Metabolism Regulation[J]. Int J Mol Sci, 2020, 21(10):3450. doi: 10.3390/ijms21103450.
doi: 10.3390/ijms21103450 |
[36] |
Fulton RE, Pearson-Smith JN, Huynh CQ, et al. Neuron-specific mitochondrial oxidative stress results in epilepsy, glucose dysregulation and a striking astrocyte response[J]. Neurobiol Dis, 2021, 158:105470. doi: 10.1016/j.nbd.2021.105470.
doi: 10.1016/j.nbd.2021.105470 |
[37] |
Cunarro J, Casado S, Lugilde J, et al. Hypothalamic Mitochondrial Dysfunction as a Target in Obesity and Metabolic Disease[J]. Front Endocrinol (Lausanne), 2018, 9:283. doi: 10.3389/fendo.2018.00283.
doi: 10.3389/fendo.2018.00283 |
[38] |
Kim JD, Yoon NA, Jin S, et al. Microglial UCP2 Mediates Inflammation and Obesity Induced by High-Fat Feeding[J]. Cell Metab, 2019, 30(5):952-962.e5. doi: 10.1016/j.cmet.2019.08.010.
doi: S1550-4131(19)30439-5 pmid: 31495690 |
[39] |
Desai M, Stiles L, Torsoni AS, et al. TNFα-Induced Oxidative Stress and Mitochondrial Dysfunction Alter Hypothalamic Neurogenesis and Promote Appetite Versus Satiety Neuropeptide Expression in Mice[J]. Brain Sci, 2022, 12(7):900. doi: 10.3390/brainsci12070900.
doi: 10.3390/brainsci12070900 |
[40] |
Karbownik-Lewińska M, Stępniak J, Lewiński A. Potential Risk Factors for Isolated Hypothyroxinemia in Women of Childbearing Age-Results from Retrospective Analysis[J]. J Clin Med, 2021, 10(22):5384. doi: 10.3390/jcm10225384.
doi: 10.3390/jcm10225384 |
[41] |
Schneider A, Saccon TD, Garcia DN, et al. The Interconnections Between Somatic and Ovarian Aging in Murine Models[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(9):1579-1586. doi: 10.1093/gerona/glaa258.
doi: 10.1093/gerona/glaa258 |
[42] |
Nestor CC, Qiu J, Padilla SL, et al. Optogenetic Stimulation of Arcuate Nucleus Kiss1 Neurons Reveals a Steroid-Dependent Glutamatergic Input to POMC and AgRP Neurons in Male Mice[J]. Mol Endocrinol, 2016, 30(6):630-644. doi: 10.1210/me.2016-1026.
doi: 10.1210/me.2016-1026 pmid: 27093227 |
[43] |
Guzmán A, Hernández-Coronado CG, Rosales-Torres AM, et al. Leptin regulates neuropeptides associated with food intake and GnRH secretion[J]. Ann Endocrinol (Paris), 2019, 80(1):38-46. doi: 10.1016/j.ando.2018.07.012.
doi: S0003-4266(18)31212-5 pmid: 30243474 |
[44] |
Valsamakis G, Lois K, Kumar S, et al. Metabolic and other effects of pioglitazone as an add-on therapy to metformin in the treatment of polycystic ovary syndrome(PCOS)[J]. Hormones (Athens), 2013, 12(3):363-378. doi: 10.1007/BF03401302.
doi: 10.1007/BF03401302 pmid: 24121378 |
[45] |
Sergi D, Williams LM. Potential relationship between dietary long-chain saturated fatty acids and hypothalamic dysfunction in obesity[J]. Nutr Rev, 2020, 78(4):261-277. doi: 10.1093/nutrit/nuz056.
doi: 10.1093/nutrit/nuz056 pmid: 31532491 |
[46] |
Lainez NM, Coss D. Obesity, Neuroinflammation, and Reproductive Function[J]. Endocrinology, 2019, 160(11):2719-2736. doi: 10.1210/en.2019-00487.
doi: 10.1210/en.2019-00487 pmid: 31513269 |
[47] |
Counil H, Krantic S. Synaptic Activity and (Neuro)Inflammation in Alzheimer′s Disease: Could Exosomes be an Additional Link?[J]. J Alzheimers Dis, 2020, 74(4):1029-1043. doi: 10.3233/JAD-191237.
doi: 10.3233/JAD-191237 |
[48] |
Passarelli A, Lettieri A, Nur Demirci T, et al. Gonadotropin-releasing hormone-secreting neuron development and function: an update[J]. Minerva Endocrinol (Torino), 2022, 47(1):58-69. doi: 10.23736/S2724-6507.22.03683-1.
doi: 10.23736/S2724-6507.22.03683-1 |
[1] | XU Shu-ying, XU Hai-peng, WANG Li-na, ZHANG Yang. Relationship between Zinc and Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 217-221. |
[2] | YAN Hui-bo, ZHANG Lin. Analysis of the Disease Burden and Projections of Polycystic Ovary Syndrome in China and Globally from 1990 to 2021 [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 228-233. |
[3] | CHEN Shu-lin, QIAO Qiao. Relationship between Vaginal Epithelial Injury Repair and Microecological Environment [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 52-56. |
[4] | ZHANG Dong, WANG Zheng, LI Kai, BIAN Wen-li, GAO Zhi-hua. A Case of Severe Spontaneous Ovarian Hyperstimulation Syndrome in Non-Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 79-83. |
[5] | XI Xin-xin, GUO Hong, LI Shan, FENG Di, LIU Duo-duo. Effect of Preoperative Oral Carbohydrate on Enhanced Recovery after Cesarean Section [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 616-619. |
[6] | HU Die, REN Jia-jie, LIU Jia-ning, FENG Xiao-ling. Mechanism Study of MAPK Pathway in PCOS and Monomeric Treatment of Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 684-691. |
[7] | LI Dong-nan, XIANG Rong, WANG Hai-yang, SUN Miao. Regulatory Mechanism of Ovarian Granulosa Cell Apoptosis in Polycystic Ovary Syndrome with Progress in Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 692-697. |
[8] | LI Chen-xi, FAN Meng-xiao, WU Lin-ling, DOU Zhen, JIA Jia, SUN Ya-xuan. Advances in Research on Neuroendocrine Disorders Induced by Hyperandrogenism in Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 698-702. |
[9] | SUN Yi-wen, XIONG Ke, ZHANG Zi-xu, WENG Ya-jing, WANG Yong. The Effect of Bisphenol A on the Pathogenesis of Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 601-605. |
[10] | LI Zhen-ying, SUN Xiao-tong, XING Guang-yang, LI Jing-jing, LIU Ting-ting, ZHANG Yi-fan. Research Progress on Sphingolipid Metabolism and Benign and Malignant Gynecological Diseases [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 649-654. |
[11] | HUANG Xiao-tong, CHENG Xiang-wei, ZHANG Yang. Research Progress into the Role of TLR4 at the Maternal-Fetal Interface in Pre-Eclampsia [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 689-694. |
[12] | XU Hui, XIE Xiu-zhen. Research Progress of Negative Emotion in Patients with Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 530-534. |
[13] | KOU Li-hui, SONG Dian-rong, GUO Jie. Effects of Negative Emotion on Infertility Patients with Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 535-539. |
[14] | GAO Ya, LU Di, SONG Dian-rong. Role of Anti- Müllerian Hormone in Pathogenesis, Diagnosis and Treatment of Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 540-544. |
[15] | LI Jing-jing, SUN Xiao-tong, LIU Ting-ting, LI Zhen-ying, ZHANG Yi-fan, SU Yan. Research Progress of Fibroblast Growth Factor 21 and Gestational Metabolic Diseases [J]. Journal of International Obstetrics and Gynecology, 2023, 50(4): 400-404. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||