Journal of International Obstetrics and Gynecology ›› 2023, Vol. 50 ›› Issue (2): 132-137.doi: 10.12280/gjfckx.20220695
• Obstetric Physiology & Obstetric Disease: Review • Previous Articles Next Articles
MAO Jing-xia, PAN Yong-chao, WU Rui-jin()
Received:
2022-08-31
Published:
2023-04-15
Online:
2023-04-24
Contact:
WU Rui-jin
E-mail:wurj@zju.edu.cn
MAO Jing-xia, PAN Yong-chao, WU Rui-jin. Research Progress of Embryonic Development and the Origin of Polycystic Ovary Syndrome[J]. Journal of International Obstetrics and Gynecology, 2023, 50(2): 132-137.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies[J]. Mol Metab, 2020, 35:100937. doi: 10.1016/j.molmet.2020.01.001.
doi: 10.1016/j.molmet.2020.01.001 |
[2] |
Zou K, Ding G, Huang H. Advances in research into gamete and embryo-fetal origins of adult diseases[J]. Sci China Life Sci, 2019, 62(3):360-368. doi: 10.1007/s11427-018-9427-4.
doi: 10.1007/s11427-018-9427-4 pmid: 30685828 |
[3] |
Parker J, O′Brien C, Gersh FL. Developmental origins and transgenerational inheritance of polycystic ovary syndrome[J]. Aust N Z J Obstet Gynaecol, 2021, 61(6):922-926. doi: 10.1111/ajo.13420.
doi: 10.1111/ajo.13420 |
[4] |
Chaudhary H, Patel J, Jain NK, et al. The role of polymorphism in various potential genes on polycystic ovary syndrome susceptibility and pathogenesis[J]. J Ovarian Res, 2021, 14(1):125. doi: 10.1186/s13048-021-00879-w.
doi: 10.1186/s13048-021-00879-w pmid: 34563259 |
[5] |
Chen ZJ, Zhao H, He L, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3[J]. Nat Genet, 2011, 43(1):55-59. doi: 10.1038/ng.732.
doi: 10.1038/ng.732 |
[6] |
Qin L, Zhao S, Yang P, et al. Variation analysis of anti-Müllerian hormone gene in Chinese women with polycystic ovary syndrome[J]. Endocrine, 2021, 72(1):287-293. doi: 10.1007/s12020-020-02538-4.
doi: 10.1007/s12020-020-02538-4 pmid: 33169290 |
[7] |
Hartanti MD, Rosario R, Hummitzsch K, et al. Could perturbed fetal development of the ovary contribute to the development of polycystic ovary syndrome in later life?[J]. PLoS One, 2020, 15(2):e0229351.doi:org/10.1371/journal.pone.0229351.
doi: org/10.1371/journal.pone.0229351 |
[8] |
Idicula-Thomas S, Gawde U, Bhaye S, et al. Meta-analysis of gene expression profiles of lean and obese PCOS to identify differentially regulated pathways and risk of comorbidities[J]. Comput Struct Biotechnol J, 2020, 18:1735-1745. doi: 10.1016/j.csbj.2020.06.023.
doi: 10.1016/j.csbj.2020.06.023 |
[9] |
Sagvekar P, Kumar P, Mangoli V, et al. DNA methylome profiling of granulosa cells reveals altered methylation in genes regulating vital ovarian functions in polycystic ovary syndrome[J]. Clin Epigenetics, 2019, 11(1):61. doi: 10.1186/s13148-019-0657-6.
doi: 10.1186/s13148-019-0657-6 pmid: 30975191 |
[10] |
Mimouni NEH, Paiva I, Barbotin AL, et al. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process[J]. Cell Metab, 2021, 33(3):513-530.e8. doi: 10.1016/j.cmet.2021.01.004.
doi: 10.1016/j.cmet.2021.01.004 pmid: 33539777 |
[11] |
Li Y, Zhang J, Liu YD, et al. Long non-coding RNA TUG1 and its molecular mechanisms in polycystic ovary syndrome[J]. RNA Biol, 2020, 17(12):1798-1810. doi: 10.1080/15476286.2020.1783850.
doi: 10.1080/15476286.2020.1783850 |
[12] |
Zhao J, Huang J, Geng X, et al. Polycystic Ovary Syndrome: Novel and Hub lncRNAs in the Insulin Resistance-Associated lncRNA-mRNA Network[J]. Front Genet, 2019, 10:772. doi: 10.3389/fgene.2019.00772.
doi: 10.3389/fgene.2019.00772 pmid: 31507635 |
[13] |
Andræ F, Abbott D, Stridsklev S, et al. Sustained Maternal Hyperandrogenism During PCOS Pregnancy Reduced by Metformin in Non-obese Women Carrying a Male Fetus[J]. J Clin Endocrinol Metab, 2020, 105(12):3762-3770. doi: 10.1210/clinem/dgaa605.
doi: 10.1210/clinem/dgaa605 |
[14] |
Tehrani FR, Noroozzadeh M, Zahediasl S, et al. Introducing a rat model of prenatal androgen-induced polycystic ovary syndrome in adulthood[J]. Exp Physiol, 2014, 99(5):792-801. doi: 10.1113/expphysiol.2014.078055.
doi: 10.1113/expphysiol.2014.078055 pmid: 24532600 |
[15] |
Silva MSB, Desroziers E, Hessler S, et al. Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: Implications for polycystic ovary syndrome[J]. EBioMedicine, 2019, 44:582-596. doi: 10.1016/j.ebiom.2019. 05.065.
doi: S2352-3964(19)30373-1 pmid: 31178425 |
[16] |
Barsky M, Merkison J, Hosseinzadeh P, et al. Fetal programming of polycystic ovary syndrome: Effects of androgen exposure on prenatal ovarian development[J]. J Steroid Biochem Mol Biol, 2021, 207:105830. doi: 10.1016/j.jsbmb.2021.105830.
doi: 10.1016/j.jsbmb.2021.105830 |
[17] |
Guo X, Puttabyatappa M, Thompson RC, et al. Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS[J]. Endocrinology, 2019, 160(10):2471-2484. doi: 10.1210/en.2019-00389.
doi: 10.1210/en.2019-00389 pmid: 31398247 |
[18] |
Bertoldo MJ, Caldwell ASL, Riepsamen AH, et al. A Hyperandrogenic Environment Causes Intrinsic Defects That Are Detrimental to Follicular Dynamics in a PCOS Mouse Model[J]. Endocrinology, 2019, 160(3):699-715. doi: 10.1210/en.2018-00966.
doi: 10.1210/en.2018-00966 pmid: 30657917 |
[19] |
Zhou S, Lu D, Wen S, et al. Elevated Anti-Müllerian Hormone Levels in Newborns of Women with Polycystic Ovary Syndrome: a Systematic Review and Meta-analysis Based on Observational Studies[J]. Reprod Sci, 2022, 29(1):301-311. doi: 10.1007/s43032-021-00652-w.
doi: 10.1007/s43032-021-00652-w |
[20] |
Tata B, Mimouni NEH, Barbotin AL, et al. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood[J]. Nat Med, 2018, 24(6):834-846. doi: 10.1038/s41591-018-0035-5.
doi: 10.1038/s41591-018-0035-5 pmid: 29760445 |
[21] |
Dewailly D, Barbotin AL, Dumont A, et al. Role of Anti-Müllerian Hormone in the Pathogenesis of Polycystic Ovary Syndrome[J]. Front Endocrinol (Lausanne), 2020, 11:641. doi: 10.3389/fendo.2020.00641.
doi: 10.3389/fendo.2020.00641 |
[22] |
Rutkowska AZ, Diamanti-Kandarakis E. Polycystic ovary syndrome and environmental toxins[J]. Fertil Steril, 2016, 106(4):948-958. doi: 10.1016/j.fertnstert.2016.08.031.
doi: 10.1016/j.fertnstert.2016.08.031 pmid: 27559705 |
[23] |
Huang R, Li J, Liao M, et al. Combinational exposure to Bisphenol A and a high-fat diet causes trans-generational Malfunction of the female reproductive system in mice[J]. Mol Cell Endocrinol, 2022, 541:111507. doi: 10.1016/j.mce.2021.111507.
doi: 10.1016/j.mce.2021.111507 |
[24] |
Shi J, Liu C, Chen M, et al. The interference effects of bisphenol A on the synthesis of steroid hormones in human ovarian granulosa cells[J]. Environ Toxicol, 2021, 36(4):665-674. doi: 10.1002/tox.23070.
doi: 10.1002/tox.23070 pmid: 33258555 |
[25] |
Manikkam M, Tracey R, Guerrero-Bosagna C, et al. Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations[J]. PLoS One, 2013, 8(1):e55387. doi: 10.1371/journal.pone.0055387.
doi: 10.1371/journal.pone.0055387 |
[26] |
Hlisníková H, Petrovičová I, Kolena B, et al. Effect of prenatal phthalate exposure on the association of maternal hormone levels during early pregnancy and reproductive markers in infants at the age of 3 months[J]. Reprod Toxicol, 2021, 102:35-42. doi: 10.1016/j.reprotox.2021.04.001.
doi: 10.1016/j.reprotox.2021.04.001 pmid: 33838276 |
[27] |
Gill S, Brehm E, Leon K, et al. Prenatal exposure to an environmentally relevant phthalate mixture alters ovarian steroidogenesis and folliculogenesis in the F1 generation of adult female mice[J]. Reprod Toxicol, 2021, 106:25-31. doi: 10.1016/j.reprotox.2021.09.013.
doi: 10.1016/j.reprotox.2021.09.013 pmid: 34597818 |
[28] |
Fan Y, Qin Y, Chen M, et al. Prenatal low-dose DEHP exposure induces metabolic adaptation and obesity: Role of hepatic thiamine metabolism[J]. J Hazard Mater, 2020, 385:121534. doi: 10.1016/j.jhazmat.2019.121534.
doi: 10.1016/j.jhazmat.2019.121534 |
[29] |
Garruti G, Depalo R, De Angelis M. Weighing the Impact of Diet and Lifestyle on Female Reproductive Function[J]. Curr Med Chem, 2019, 26(19):3584-3592. doi: 10.2174/0929867324666170518101008.
doi: 10.2174/0929867324666170518101008 pmid: 28521685 |
[30] |
Katulski K, Czyzyk A, Podkowa N, et al. Clinical and hormonal features of women with polycystic ovary syndrome living in rural and urban areas[J]. Ann Agric Environ Med, 2017, 24(3):522-526. doi: 10.5604/12321966.1227642.
doi: 10.5604/12321966.1227642 |
[31] |
Xu M, Che L, Yang Z, et al. Effect of High Fat Dietary Intake during Maternal Gestation on Offspring Ovarian Health in a Pig Model[J]. Nutrients, 2016, 8(8):498. doi: 10.3390/nu8080498.
doi: 10.3390/nu8080498 |
[32] |
Cheong Y, Sadek KH, Bruce KD, et al. Diet-induced maternal obesity alters ovarian morphology and gene expression in the adult mouse offspring[J]. Fertil Steril, 2014, 102(3):899-907. doi: 10.1016/j.fertnstert.2014.06.015.
doi: 10.1016/j.fertnstert.2014.06.015 pmid: 25063726 |
[33] |
Carbone L, Davis BA, Fei SS, et al. Synergistic Effects of Hyperandrogenemia and Obesogenic Western-style Diet on Transcription and DNA Methylation in Visceral Adipose Tissue of Nonhuman Primates[J]. Sci Rep, 2019, 9(1):19232. doi: 10.1038/s41598-019-55291-8.
doi: 10.1038/s41598-019-55291-8 pmid: 31848372 |
[34] |
Merhi Z, Du XQ, Charron MJ. Perinatal exposure to high dietary advanced glycation end products affects the reproductive system in female offspring in mice[J]. Mol Hum Reprod, 2020, 26(8):615-623. doi: 10.1093/molehr/gaaa046.
doi: 10.1093/molehr/gaaa046 pmid: 32609365 |
[35] |
Azhary JMK, Harada M, Kunitomi C, et al. Androgens Increase Accumulation of Advanced Glycation End Products in Granulosa Cells by Activating ER Stress in PCOS[J]. Endocrinology, 2020, 161(2):bqaa015. doi: 10.1210/endocr/bqaa015.
doi: 10.1210/endocr/bqaa015 |
[36] |
Puttabyatappa M, Padmanabhan V. Developmental Programming of Ovarian Functions and Dysfunctions[J]. Vitam Horm, 2018, 107:377-422. doi: 10.1016/bs.vh.2018.01.017.
doi: S0083-6729(18)30017-7 pmid: 29544638 |
[37] |
Liu Y, Liu J, Gao Y, et al. The Body Composition in Early Pregnancy is Associated with the Risk of Development of Gestational Diabetes Mellitus Late During the Second Trimester[J]. Diabetes Metab Syndr Obes, 2020, 13:2367-2374. doi: 10.2147/DMSO.S245155.
doi: 10.2147/DMSO.S245155 |
[38] |
Grunnet LG, Hansen S, Hjort L, et al. Adiposity, Dysmetabolic Traits, and Earlier Onset of Female Puberty in Adolescent Offspring of Women With Gestational Diabetes Mellitus: A Clinical Study Within the Danish National Birth Cohort[J]. Diabetes Care, 2017, 40(12):1746-1755. doi: 10.2337/dc17-0514.
doi: 10.2337/dc17-0514 pmid: 29038315 |
[39] |
Szabo AJ. Transferred maternal fatty acids stimulate fetal adipogenesis and lead to neonatal and adult obesity[J]. Med Hypotheses, 2019, 122:82-88. doi: 10.1016/j.mehy.2018.10.022.
doi: S0306-9877(18)30717-5 pmid: 30593430 |
[40] |
Hu M, Zhang Y, Guo X, et al. Perturbed ovarian and uterine glucocorticoid receptor signaling accompanies the balanced regulation of mitochondrial function and NFκB-mediated inflammation under conditions of hyperandrogenism and insulin resistance[J]. Life Sci, 2019, 232:116681. doi: 10.1016/j.lfs.2019.116681.
doi: 10.1016/j.lfs.2019.116681 |
[1] | XU Shu-ying, XU Hai-peng, WANG Li-na, ZHANG Yang. Relationship between Zinc and Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 217-221. |
[2] | YAN Hui-bo, ZHANG Lin. Analysis of the Disease Burden and Projections of Polycystic Ovary Syndrome in China and Globally from 1990 to 2021 [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 228-233. |
[3] | YUAN Hai-ning, MU Zhen-ni, ZHANG Jiang-lin, LI Heng-bing, ZHANG Yun-jie, SUN Zhen-gao. Association and Mechanism of Aged Oocytes Quality and Telomerase [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 57-60. |
[4] | ZHANG Dong, WANG Zheng, LI Kai, BIAN Wen-li, GAO Zhi-hua. A Case of Severe Spontaneous Ovarian Hyperstimulation Syndrome in Non-Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 79-83. |
[5] | HU Die, REN Jia-jie, LIU Jia-ning, FENG Xiao-ling. Mechanism Study of MAPK Pathway in PCOS and Monomeric Treatment of Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 684-691. |
[6] | LI Dong-nan, XIANG Rong, WANG Hai-yang, SUN Miao. Regulatory Mechanism of Ovarian Granulosa Cell Apoptosis in Polycystic Ovary Syndrome with Progress in Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 692-697. |
[7] | LI Chen-xi, FAN Meng-xiao, WU Lin-ling, DOU Zhen, JIA Jia, SUN Ya-xuan. Advances in Research on Neuroendocrine Disorders Induced by Hyperandrogenism in Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 698-702. |
[8] | WANG Ya-hui, WANG Yan, WANG Yan, PEI Fe. The Etiology of Fetal Growth Restriction and Its Effects on the Long-Term Health of the Child [J]. Journal of International Obstetrics and Gynecology, 2024, 51(2): 152-156. |
[9] | SUN Yi-wen, XIONG Ke, ZHANG Zi-xu, WENG Ya-jing, WANG Yong. The Effect of Bisphenol A on the Pathogenesis of Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 601-605. |
[10] | LI Zhen-ying, SUN Xiao-tong, XING Guang-yang, LI Jing-jing, LIU Ting-ting, ZHANG Yi-fan. Research Progress on Sphingolipid Metabolism and Benign and Malignant Gynecological Diseases [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 649-654. |
[11] | HU Meng-shuang, MEI Jing. Fetal Limb Body Wall Complex:A Case Report and Literature Review [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 519-522. |
[12] | XU Hui, XIE Xiu-zhen. Research Progress of Negative Emotion in Patients with Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 530-534. |
[13] | KOU Li-hui, SONG Dian-rong, GUO Jie. Effects of Negative Emotion on Infertility Patients with Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 535-539. |
[14] | GAO Ya, LU Di, SONG Dian-rong. Role of Anti- Müllerian Hormone in Pathogenesis, Diagnosis and Treatment of Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 540-544. |
[15] | WANG Lei, ZHANG Ning. The Impact of Intestinal Microbiota Imbalance on the Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 256-260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||