Journal of International Obstetrics and Gynecology ›› 2025, Vol. 52 ›› Issue (1): 57-60.doi: 10.12280/gjfckx.20240915
• Gynecological Disease & Related Research:Review • Previous Articles Next Articles
YUAN Hai-ning, MU Zhen-ni, ZHANG Jiang-lin, LI Heng-bing, ZHANG Yun-jie, SUN Zhen-gao()
Received:
2024-10-11
Published:
2025-02-15
Online:
2025-02-14
Contact:
SUN Zhen-gao, E-mail: sunzhengao77@126.com
YUAN Hai-ning, MU Zhen-ni, ZHANG Jiang-lin, LI Heng-bing, ZHANG Yun-jie, SUN Zhen-gao. Association and Mechanism of Aged Oocytes Quality and Telomerase[J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 57-60.
Add to citation manager EndNote|Ris|BibTeX
[1] | Reader KL, Stanton JL, Juengel JL. The Role of Oocyte Organelles in Determining Developmental Competence[J]. Biology(Basel), 2017, 6(3):35. doi: 10.3390/biology6030035. |
[2] | Hao Y, Lv M, Peng J, et al. Alteration of relative telomere length and telomerase reverse transcriptase expression in the granulosa cells of women during aging and assessment of in vitro fertilization outcomes[J]. Mol Med Rep, 2023, 28(5):206. doi: 10.3892/mmr.2023.13093. |
[3] | Vaiserman A, Krasnienkov D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives[J]. Front Genet, 2020,11:630186. doi: 10.3389/fgene.2020.630186. |
[4] | Fernandes SG, Dsouza R, Khattar E. External environmental agents influence telomere length and telomerase activity by modulating internal cellular processes: Implications in human aging[J]. Environ Toxicol Pharmacol, 2021,85:103633. doi: 10.1016/j.etap.2021.103633. |
[5] | Boccardi V, Marano L. Aging, Cancer, and Inflammation: The Telomerase Connection[J]. Int J Mol Sci, 2024, 25(15):8542. doi: 10.3390/ijms25158542. |
[6] |
Alanazi A, Parkinson GN, Haider S. Structural Motifs at the Telomeres and Their Role in Regulatory Pathways[J]. Biochemistry, 2024, 63(7):827-842. doi: 10.1021/acs.biochem.4c00023.
pmid: 38481135 |
[7] | Smogorzewska A, van Steensel B, Bianchi A, et al. Control of human telomere length by TRF1 and TRF2[J]. Mol Cell Biol, 2000, 20(5):1659-1668. doi: 10.1128/MCB.20.5.1659-1668.2000. |
[8] | Aramburu T, Plucinsky S, Skordalakes E. POT1-TPP1 telomere length regulation and disease[J]. Comput Struct Biotechnol J, 2020, 18:1939-1946. doi: 10.1016/j.csbj.2020.06.040. |
[9] | Pike AM, Strong MA, Ouyang J, et al. TIN2 Functions with TPP1/POT1 To Stimulate Telomerase Processivity[J]. Mol Cell Biol, 2019, 39(21):e00593-00518. doi: 10.1128/MCB.00593-18. |
[10] |
Vaurs M, Audry J, Runge KW, et al. A proto-telomere is elongated by telomerase in a shelterin-dependent manner in quiescent fission yeast cells[J]. Nucleic Acids Res, 2022, 50(20):11682-11695. doi: 10.1093/nar/gkac986.
pmid: 36330920 |
[11] | Bettin N, Querido E, Gialdini I, et al. TERRA transcripts localize at long telomeres to regulate telomerase access to chromosome ends[J]. Sci Adv, 2024, 10(24):eadk4387. doi: 10.1126/sciadv.adk4387. |
[12] | Uysal F, Kosebent EG, Toru HS, et al. Decreased expression of TERT and telomeric proteins as human ovaries age may cause telomere shortening[J]. J Assist Reprod Genet, 2021, 38(2):429-441. doi: 10.1007/s10815-020-01932-1. |
[13] |
Robinson LG Jr, Kalmbach K, Sumerfield O, et al. Telomere dynamics and reproduction[J]. Fertil Steril, 2024, 121(1):4-11. doi: 10.1016/j.fertnstert.2023.11.012.
pmid: 37993053 |
[14] | Panasiak L, Kuciński M, Hliwa P, et al. Telomerase Activity in Somatic Tissues and Ovaries of Diploid and Triploid Rainbow Trout (Oncorhynchus mykiss) Females[J]. Cells, 2023, 12(13):1772. doi: 10.3390/cells12131772. |
[15] | Kosebent EG, Uysal F, Ozturk S. The altered expression of telomerase components and telomere-linked proteins may associate with ovarian aging in mouse[J]. Exp Gerontol, 2020,138:110975. doi: 10.1016/j.exger.2020.110975. |
[16] |
Sivakova B, Wagner A, Kretova M, et al. Quantitative proteomics and phosphoproteomics profiling of meiotic divisions in the fission yeast Schizosaccharomyces pombe[J]. Sci Rep, 2024, 14(1):23105. doi: 10.1038/s41598-024-74523-0.
pmid: 39367033 |
[17] | Llonch S, Barragán M, Nieto P, et al. Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age[J]. Aging Cell, 2021, 20(5):e13360. doi: 10.1111/acel.13360. |
[18] | Telfer EE, Grosbois J, Odey YL, et al. Making a good egg: human oocyte health, aging, and in vitro development[J]. Physiol Rev, 2023, 103(4):2623-2677. doi: 10.1152/physrev.00032.2022. |
[19] | Sanpedro-Luna JA, Vega-Alvarado L, Vázquez-Cruz C, et al. Global Gene Expression of Post-Senescent Telomerase-Negative ter1Δ Strain of Ustilago maydis[J]. J Fungi(Basel), 2023, 9(9):896. doi: 10.3390/jof9090896. |
[20] | Huang W, Li X, Yang H, et al. The impact of maternal age on aneuploidy in oocytes: Reproductive consequences, molecular mechanisms, and future directions[J]. Ageing Res Rev, 2024,97:102292. doi: 10.1016/j.arr.2024.102292. |
[21] | Dewhurst SM, Yao X, Rosiene J, et al. Structural variant evolution after telomere crisis[J]. Nat Commun, 2021, 12(1):2093. doi: 10.1038/s41467-021-21933-7. |
[22] |
Wei X, Zhou Y, Shao E, et al. Tert promotes cardiac regenerative repair after MI through alleviating ROS-induced DNA damage response in cardiomyocyte[J]. Cell Death Discov, 2024, 10(1):381. doi: 10.1038/s41420-024-02135-8.
pmid: 39187478 |
[23] | Jin X, Wang K, Wang L, et al. RAB7 activity is required for the regulation of mitophagy in oocyte meiosis and oocyte quality control during ovarian aging[J]. Autophagy, 2022, 18(3):643-660. doi: 10.1080/15548627.2021.1946739. |
[24] | Liu YP, He B, Wang WX, et al. PKD regulates mitophagy to prevent oxidative stress and mitochondrial dysfunction during mouse oocyte maturation[J]. Mitochondrion, 2024,78:101946. doi: 10.1016/j.mito.2024.101946. |
[25] |
Shin WH, Chung KC. Human telomerase reverse transcriptase positively regulates mitophagy by inhibiting the processing and cytoplasmic release of mitochondrial PINK1[J]. Cell Death Dis, 2020, 11(6):425. doi: 10.1038/s41419-020-2641-7.
pmid: 32513926 |
[26] |
Liu L, Blasco MA, Keefe DL. Requirement of functional telomeres for metaphase chromosome alignments and integrity of meiotic spindles[J]. EMBO Rep, 2002, 3(3):230-234. doi: 10.1093/embo-reports/kvf055.
pmid: 11882542 |
[27] |
Georgadaki K, Khoury N, Spandidos DA, et al. The molecular basis of fertilization (Review)[J]. Int J Mol Med, 2016, 38(4):979-986. doi: 10.3892/ijmm.2016.2723.
pmid: 27599669 |
[28] | Anifandis G, Samara M, Simopoulou M, et al. Insights into the Role of Telomeres in Human Embryological Parameters. Opinions Regarding IVF[J]. J Dev Biol, 2021, 9(4):49. doi: 10.3390/jdb9040049. |
[29] | Khan AM, Idrees M, Perera CD, et al. The effects of cycloastragenol on bovine embryo development, implantation potential and telomerase activity[J]. Reprod Fertil Dev, 2023, 35(10):527-538. doi: 10.1071/RD22280. |
[30] |
Liu L, Blasco M, Trimarchi J, et al. An essential role for functional telomeres in mouse germ cells during fertilization and early development[J]. Dev Biol, 2002, 249(1):74-84. doi: 10.1006/dbio.2002.0735.
pmid: 12217319 |
[31] |
Wright DL, Jones EL, Mayer JF, et al. Characterization of telomerase activity in the human oocyte and preimplantation embryo[J]. Mol Hum Reprod, 2001, 7(10):947-955. doi: 10.1093/molehr/7.10.947.
pmid: 11574663 |
[32] |
Kohlrausch FB, Wang F, Chamani I, et al. Telomere Shortening and Fusions: A Link to Aneuploidy in Early Human Embryo Development[J]. Obstet Gynecol Surv, 2021, 76(7):429-436. doi: 10.1097/OGX.0000000000000907.
pmid: 34324695 |
[33] | Chien CW, Tang YA, Jeng SL, et al. Blastocyst telomere length predicts successful implantation after frozen-thawed embryo transfer[J]. Hum Reprod Open, 2024, 2024(2):hoae012. doi: 10.1093/hropen/hoae012. |
[34] | Keefe DL, Franco S, Liu L, et al. Telomere length predicts embryo fragmentation after in vitro fertilization in women--toward a telomere theory of reproductive aging in women[J]. Am J Obstet Gynecol, 2005, 192(4):1256-1260; discussion1260-1261. doi: 10.1016/j.ajog.2005.01.036. |
[35] | Keefe DL。 Telomeres, Reproductive Aging, and Genomic Instability During Early Development[J]. Reprod Sci, 2016, 23(12):1612-1615. doi: 10.1177/1933719116676397. |
[36] | Xu L, Idrees M, Joo MD, et al. Constitutive Expression of TERT Enhances β-Klotho Expression and Improves Age-Related Deterioration in Early Bovine Embryos[J]. Int J Mol Sci, 2021, 22(10):5327. doi: 10.3390/ijms22105327. |
[37] | Mordechai A, Wasserman M, Abramov M, et al. Increasing telomerase enhanced steroidogenic genes expression and steroid hormones production in rat and human granulosa cells and in mouse ovary[J]. J Steroid Biochem Mol Biol, 2020,197:105551. doi: 10.1016/j.jsbmb.2019.105551. |
[1] | WANG Jia-ning, YAN Ying, ZHANG Han, CHU Meng-yuan, ZHANG Xin-yi. Research Progress on the Mechanism of Silence Information Regulators in Female Reproductive Aging [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 222-227. |
[2] | WANG Ya-hui, WANG Yan, WANG Yan, PEI Fe. The Etiology of Fetal Growth Restriction and Its Effects on the Long-Term Health of the Child [J]. Journal of International Obstetrics and Gynecology, 2024, 51(2): 152-156. |
[3] | JIN Qing-mei, HAN Qiao-song, LIANG Jing-nan, ZHOU Yue, SUN Zhen-gao, SONG Jing-yan. SIRT2-Mediated Protein Deacetylation and Oocyte Senescence [J]. Journal of International Obstetrics and Gynecology, 2024, 51(1): 99-104. |
[4] | HU Meng-shuang, MEI Jing. Fetal Limb Body Wall Complex:A Case Report and Literature Review [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 519-522. |
[5] | WU Ya-mei, LI Meng, LI Jia-wen, YING Hao, HUANG Lu. The Role of Autophagy in Fetal Growth Development and Pregnancy Complications [J]. Journal of International Obstetrics and Gynecology, 2023, 50(2): 121-126. |
[6] | MAO Jing-xia, PAN Yong-chao, WU Rui-jin. Research Progress of Embryonic Development and the Origin of Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(2): 132-137. |
[7] | LI Tong-yue, WENG Jing. Research Progress of TUBB8 Mutation Related to Female Infertility [J]. Journal of International Obstetrics and Gynecology, 2022, 49(1): 82-86. |
[8] | BAI Le-le, ZHAO Xiao-xi. Research Status of Correlation between Telomere Length and the Etiology of Spontaneous Abortion [J]. Journal of International Obstetrics and Gynecology, 2021, 48(5): 512-516. |
[9] | WU Wang-shu,ZHU Xin-ye,JIANG Chen-yi,SHI Lei,YU Cheng-xuan,WANG Zhi-jie,LIU Yue,DING Zhi-de. Effects of Trace Elements on Pregnancy and Fetal Development [J]. Journal of International Obstetrics and Gynecology, 2020, 47(1): 56-60. |
[10] | ZHANG Xiao-ling,ZHENG Jun. The Function of the Pathway of Protein SUMO Modification in Embryonic Development [J]. Journal of International Obstetrics and Gynecology, 2017, 44(6): 605-609. |
[11] | HOU Hai-yan,YU Qi. Mitochondrion Dysfunction and Ovarian Aging [J]. Journal of International Obstetrics and Gynecology, 2017, 44(4): 450-454. |
[12] | Zhide DING. Antibiotics application during the pregnancy and their effects on fetal development [J]. Journal of International Obstetrics and Gynecology, 2017, 44(1): 75-79. |
[13] | SONG Ni-na;QU Quan-xin. Research Advances in Molecular Biological Indicators of Cervical Intraepithelial Neoplasia [J]. Journal of International Obstetrics and Gynecology, 2016, 43(5): 524-527. |
[14] | SUN Le;NI Yun-xiang;DING Zhi-de. The Epigenetic Influence of Intrauterine Environment Changes on Offspring′s Hippocampal Development [J]. Journal of International Obstetrics and Gynecology, 2016, 43(5): 547-551. |
[15] | LIAO Hua,LIU Xing-hui,ZENG Wei-yue. Research Progress of Relaxin in the Physiological and Pathologic Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2016, 43(4): 388-392. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||