Journal of International Obstetrics and Gynecology ›› 2024, Vol. 51 ›› Issue (5): 572-577.doi: 10.12280/gjfckx.20240489
• Research on Gynecological Malignancies: Review • Previous Articles Next Articles
Received:
2024-05-26
Published:
2024-10-15
Online:
2024-10-17
Contact:
HU Hong-bo, E-mail: HE Qing, HU Hong-bo. Application and Prospects of Artificial Intelligence in the Diagnosis and Treatment of Endometrial Cancer[J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 572-577.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Crosbie EJ, Kitson SJ, McAlpine JN, et al. Endometrial cancer[J]. Lancet, 2022, 399(10333):1412-1428. doi: 10.1016/S0140-6736(22)00323-3.
pmid: 35397864 |
[2] | Amant F, Mirza MR, Koskas M, et al. Cancer of the corpus uteri[J]. Int J Gynaecol Obstet, 2018, 143(Suppl 2):37-50. doi: 10.1002/ijgo.12612. |
[3] | Berek JS, Matias-Guiu X, Creutzberg C, et al. FIGO staging of endometrial cancer: 2023[J]. Int J Gynaecol Obstet, 2023, 162(2):383-394. doi: 10.1002/ijgo.14923. |
[4] | Zheng Y, Jiang P, Tu Y, et al. Incidence, risk factors, and a prognostic nomogram for distant metastasis in endometrial cancer: A SEER-based study[J]. Int J Gynaecol Obstet, 2024, 165(2):655-665. doi: 10.1002/ijgo.15264. |
[5] | Gomes B, Ashley EA. Artificial Intelligence in Molecular Medicine[J]. N Engl J Med, 2023, 388(26):2456-2465. doi: 10.1056/NEJMra2204787. |
[6] | Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to Machine Learning, Neural Networks, and Deep Learning[J]. Transl Vis Sci Technol, 2020, 9(2):14. doi: 10.1167/tvst.9.2.14. |
[7] |
Huang S, Yang J, Shen N, et al. Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective[J]. Semin Cancer Biol, 2023, 89:30-37. doi: 10.1016/j.semcancer.2023.01.006.
pmid: 36682439 |
[8] |
Johnson KW, Torres Soto J, Glicksberg BS, et al. Artificial Intelligence in Cardiology[J]. J Am Coll Cardiol, 2018, 71(23):2668-2679. doi: 10.1016/j.jacc.2018.03.521.
pmid: 29880128 |
[9] | Jiang Y, Yang M, Wang S, et al. Emerging role of deep learning-based artificial intelligence in tumor pathology[J]. Cancer Commun(Lond), 2020, 40(4):154-166. doi: 10.1002/cac2.12012. |
[10] |
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence[J]. Nat Med, 2019, 25(1):44-56. doi: 10.1038/s41591-018-0300-7.
pmid: 30617339 |
[11] | Ahuja AS. The impact of artificial intelligence in medicine on the future role of the physician[J]. PeerJ, 2019,7:e7702. doi: 10.7717/peerj.7702. |
[12] | Akazawa M, Hashimoto K, Noda K, et al. The application of machine learning for predicting recurrence in patients with early-stage endometrial cancer: a pilot study[J]. Obstet Gynecol Sci, 2021, 64(3):266-273. doi: 10.5468/ogs.20248. |
[13] | Malapelle U, Orsulic S. Editorial: Molecular pathology and computational image analyses in gynecologic malignancies[J]. Front Oncol, 2022,12:1082220. doi: 10.3389/fonc.2022.1082220. |
[14] | Seol A, Kim SI, Kim HS, et al. Impact of computed tomography-determined sarcopenia and artificial intelligence-driven waist skeletal muscle volume on survival outcome in endometrial cancer[J]. Int J Gynecol Cancer, 2021,31:A80-A81. doi: 10.1136/ijgc-2021-IGCS.197. |
[15] | Huang YT, Huang YL, Ng KK, et al. Current Status of Magnetic Resonance Imaging in Patients with Malignant Uterine Neoplasms: A Review[J]. Korean J Radiol, 2019, 20(1):18-33. doi: 10.3348/kjr.2018.0090. |
[16] | Dong HC, Dong HK, Yu MH, et al. Using Deep Learning with Convolutional Neural Network Approach to Identify the Invasion Depth of Endometrial Cancer in Myometrium Using MR Images: A Pilot Study[J]. Int J Environ Res Public Health, 2020, 17(16):5993. doi: 10.3390/ijerph17165993. |
[17] | Zhang Y, Gong C, Zheng L, et al. Deep Learning for Intelligent Recognition and Prediction of Endometrial Cancer[J]. J Healthc Eng, 2021,2021:1148309. doi: 10.1155/2021/1148309. |
[18] | Coada CA, Santoro M, Zybin V, et al. A Radiomic-Based Machine Learning Model Predicts Endometrial Cancer Recurrence Using Preoperative CT Radiomic Features: A Pilot Study[J]. Cancers(Basel), 2023, 15(18):4534. doi: 10.3390/cancers15184534. |
[19] | Leo E, Stanzione A, Miele M, et al. Artificial Intelligence and Radiomics for Endometrial Cancer MRI: Exploring the Whats, Whys and Hows[J]. J Clin Med, 2023, 13(1):226. doi: 10.3390/jcm13010226. |
[20] |
Shrestha P, Poudyal B, Yadollahi S, et al. A systematic review on the use of artificial intelligence in gynecologic imaging-Background, state of the art, and future directions[J]. Gynecol Oncol, 2022, 166(3):596-605. doi: 10.1016/j.ygyno.2022.07.024.
pmid: 35914978 |
[21] |
Urushibara A, Saida T, Mori K, et al. The efficacy of deep learning models in the diagnosis of endometrial cancer using MRI: a comparison with radiologists[J]. BMC Med Imaging, 2022, 22(1):80. doi: 10.1186/s12880-022-00808-3.
pmid: 35501705 |
[22] | Park JH, Kim EY, Luchini C, et al. Artificial Intelligence for Predicting Microsatellite Instability Based on Tumor Histomorphology: A Systematic Review[J]. Int J Mol Sci, 2022, 23(5):2462. doi: 10.3390/ijms23052462. |
[23] | Erdemoglu E, Serel TA, Karacan E, et al. Artificial intelligence for prediction of endometrial intraepithelial neoplasia and endometrial cancer risks in pre- and postmenopausal women[J]. AJOG Glob Rep, 2023, 3(1):100154. doi: 10.1016/j.xagr.2022.100154. |
[24] | Fell C, Mohammadi M, Morrison D, et al. Detection of malignancy in whole slide images of endometrial cancer biopsies using artificial intelligence[J]. PLoS One, 2023, 18(3):e0282577. doi: 10.1371/journal.pone.0282577. |
[25] | Feng M, Zhao Y, Chen J, et al. A deep learning model for lymph node metastasis prediction based on digital histopathological images of primary endometrial cancer[J]. Quant Imaging Med Surg, 2023, 13(3):1899-1913. doi: 10.21037/qims-22-220. |
[26] |
Haznedar B, Arslan MT, Kalinli A. Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data[J]. Med Biol Eng Comput, 2021, 59(3):497-509. doi: 10.1007/s11517-021-02331-z.
pmid: 33543413 |
[27] |
López-Reig R, Fernández-Serra A, Romero I, et al. Prognostic classification of endometrial cancer using a molecular approach based on a twelve-gene NGS panel[J]. Sci Rep, 2019, 9(1):18093. doi: 10.1038/s41598-019-54624-x.
pmid: 31792358 |
[28] | Stan A, Bosart K, Kaur M, et al. Detection of driver mutations and genomic signatures in endometrial cancers using artificial intelligence algorithms[J]. PLoS One, 2024, 19(2):e0299114. doi: 10.1371/journal.pone.0299114. |
[29] | Khalifa NEM, Taha MHN, Ali DE, et al. Artificial Intelligence Technique for Gene Expression by Tumor RNA-Seq Data: A Novel Optimized Deep Learning Approach[J]. IEEE Access, 2020, 8:22874-22883. doi: 10.1109/ACCESS.2020.2970210. |
[30] | Chi CL, Wang J, Ying Yew P, et al. Producing personalized statin treatment plans to optimize clinical outcomes using big data and machine learning[J]. J Biomed Inform, 2022,128:104029. doi: 10.1016/j.jbi.2022.104029. |
[31] | Ramírez A, Ogonaga-Borja I, Acosta B, et al. Ion Channels and Personalized Medicine in Gynecological Cancers[J]. Pharmaceuticals(Basel), 2023, 16(6):800. doi: 10.3390/ph16060800. |
[32] | Ajdari A, Liao Z, Mohan R, et al. Personalized mid-course FDG-PET based adaptive treatment planning for non-small cell lung cancer using machine learning and optimization[J]. Phys Med Biol, 2022, 67(18):10.1088/1361-6560/ac88b3. doi: 10.1088/1361-6560/ac88b3. |
[33] | Butt SR, Soulat A, Lal PM, et al. Impact of artificial intelligence on the diagnosis, treatment and prognosis of endometrial cancer[J]. Ann Med Surg(Lond), 2024, 86(3):1531-1539. doi: 10.1097/MS9.0000000000001733. |
[34] | Bhardwaj V, Sharma A, Parambath SV, et al. Machine Learning for Endometrial Cancer Prediction and Prognostication[J]. Front Oncol, 2022,12:852746. doi: 10.3389/fonc.2022.852746. |
[35] | Mao W, Chen C, Gao H, et al. A deep learning-based automatic staging method for early endometrial cancer on MRI images[J]. Front Physiol, 2022,13:974245. doi: 10.3389/fphys.2022.974245. |
[36] | Hong R, Liu W, DeLair D, et al. Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models[J]. Cell Rep Med, 2021, 2(9):100400. doi: 10.1016/j.xcrm.2021.100400. |
[37] |
Siontis KC, Friedman PA. The Role of Artificial Intelligence in Arrhythmia Monitoring[J]. Card Electrophysiol Clin, 2021, 13(3):543-554. doi: 10.1016/j.ccep.2021.04.011.
pmid: 34330380 |
[38] | Forooghifar F, Aminifar A, Cammoun L, et al. A Self-Aware Epilepsy Monitoring System for Real-Time Epileptic Seizure Detection[J]. Mobile Networks Applications, 2022, 27(2):677-690. doi: 10.1007/s11036-019-01322-7. |
[39] | Choi SH, Yoon H. Convolutional Neural Networks for the Real-Time Monitoring of Vital Signs Based on Impulse Radio Ultrawide-Band Radar during Sleep[J]. Sensors(Basel), 2023, 23(6):3116. doi: 10.3390/s23063116. |
[1] | CHEN Shu-wan, DENG Gao-pi, YUAN Shuo. A Case of Uterine Leiomyoma with Bizarre Nucleus [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 187-190. |
[2] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
[3] | HOU Chun-yan, DU Xiu-ping. Two Cases of Spontaneous Uterine Rupture in the Middle and Late Stages of Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 110-113. |
[4] | ZHONG Pei-qu, ZHAO Li-jian, ZOU Xin-xin. A Case of Rudimentary Horn Pregnancy Undergoing Expectant Treatment until the Third Trimester [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 114-116. |
[5] | PAN Qi, FENG Tong-fu, JIN Jing, WU Ying, DU Xin. Laparoscopic Resection of Giant Mature Retroperitoneal Teratoma in An Adult: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 28-31. |
[6] | ZHANG Dong, WANG Zheng, LI Kai, BIAN Wen-li, GAO Zhi-hua. A Case of Severe Spontaneous Ovarian Hyperstimulation Syndrome in Non-Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 79-83. |
[7] | ZHANG Ye, CHEN Qiao-yun, ZHAO Jia-yi, CHEN Lu, LIU Jian-rong. Progress in the Application of Nanoparticles in the Prevention and Treatment of Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 8-12. |
[8] | DOU Miao-miao, ZHENG Jing, ZHANG Hang, YANG Bo, ZHANG Chun-jie, LIU Zhi-jie. Diagnosis and Prognosis Analysis of Accessory Cavitated Uterine Malformations: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 84-88. |
[9] | GAO Yu, LANG Jing-he, LI Lei. The Challenges and Impact of Artificial Intelligence on Obstetrics and Gynecology [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 601-606. |
[10] | LIU Si-min, LI Hong-li, GUO Xi, HU Ya-li, YANG Yong-xiu. Late Pregnancy with Ovarian Serous Cystadenoma Pedicle Torsion: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 632-635. |
[11] | HUANG Chu-bing, GUO Chun, ZHENG Jia-yi, LIU Wei. Hyperlipidemia-Induced Acute Pancreatitis in Pregnancy: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 636-640. |
[12] | GUO Xi, LIU Si-min, WEI Jia, YANG Yong-xiu. Malignant Transformation of Ovarian and Tube Endometriosis into Clear Cell Carcinoma: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 680-683. |
[13] | GUO Pei-yi, ZHU Xue-hong, LIU Hui-xing, LU Li-miao, LIN Zhong. Research Progress on Exosomes in the Diagnosis and Treatment of Premature Ovarian Failure [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 492-496. |
[14] | HUANG Mo-ya, ZHAO Ya-qian, HE Yin-fang. Progress in the Diagnosis and Treatment of Pregnancy Complicated by Krukenberg Tumor [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 531-535. |
[15] | ZHANG Yong-qing, CHEN Dan-qing, CHEN Lu-ping, MA Xin-rui, CAI Wang-ying, WANG Mei-lin. The Value of Early Pregnancy Fasting Serum ANGPTL-2 and ANGPTL-8 Levels in Predicting Gestational Diabetes Mellitus Based on Propensity Score Matching [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 536-540. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||