Journal of International Obstetrics and Gynecology ›› 2025, Vol. 52 ›› Issue (2): 199-205.doi: 10.12280/gjfckx.20240982
• Gynecological Disease & Related Research: Review • Previous Articles Next Articles
CAO Xiu-rong, ZHOU Wen-bai, FAN Xiang, WANG Yi-fei, ZHU Peng-feng△()
Received:
2024-10-31
Published:
2025-04-15
Online:
2025-04-22
Contact:
ZHU Peng-feng
E-mail:zpf68999@163.com
CAO Xiu-rong, ZHOU Wen-bai, FAN Xiang, WANG Yi-fei, ZHU Peng-feng. Single-Cell RNA Sequencing Analysis of the Angiogenesis Mechanism in Endometriosis[J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 199-205.
Add to citation manager EndNote|Ris|BibTeX
方法 | 实验目的 | 实验流程 | 数据分析 |
---|---|---|---|
bulk RNA-seq | 检测单个标本中的基因表达情况; 比较多个标本间差异表达基因 | 从整个组织或全部细胞中提取RNA,逆转录,建库测序 | 评估转录本,基因的表达;差异基因表达分析;可变剪切 |
scRNA-seq | 检测单个细胞中的基因表达情况; 比较不同状态,细胞间的表达差异 | 解离单个细胞加标签,核苷酸序列扩增,建库测序 | 降维聚类;鉴定细胞亚群;差异基因表达;受体配体互作;拟时序,分化轨迹 |
方法 | 实验目的 | 实验流程 | 数据分析 |
---|---|---|---|
bulk RNA-seq | 检测单个标本中的基因表达情况; 比较多个标本间差异表达基因 | 从整个组织或全部细胞中提取RNA,逆转录,建库测序 | 评估转录本,基因的表达;差异基因表达分析;可变剪切 |
scRNA-seq | 检测单个细胞中的基因表达情况; 比较不同状态,细胞间的表达差异 | 解离单个细胞加标签,核苷酸序列扩增,建库测序 | 降维聚类;鉴定细胞亚群;差异基因表达;受体配体互作;拟时序,分化轨迹 |
单细胞测序方法 | 测序原理 | 区域 | UMI | 扩增 方法 | 捕获法 | 优点 | 缺点 |
---|---|---|---|---|---|---|---|
Smart-seq | 用含有PCR识别序列的引物和M-MLV RT | 全长 | × | PCR | 流式分选或显微操作 | 高转录本覆盖,可实现SNP和可变剪切分析 | 不能分析非poly(A)的RNA;reads不带有mRNA链特异性 |
Drop-seq | 基于微液滴技术,每个cDNA都用一个细胞特异性barcode和UMI标记 | 3′端 | √ | PCR | 液滴 | 建库流程快,成本低 | 需要微流控平台;细胞捕获率较低 |
CEL-seq | 通过逆转录和体外转录整合条形码和UMI;线性扩增 | 3′端 | √ | IVT | 微流控 | 错误率比较低 | 强烈的3′偏好;高丰度转录本被优先扩增;总RNA需求多 |
10x Genomics | 类似于Drop-seq,利用微流体“双十字”交叉系统分选,通过barcode磁珠-单细胞-油滴形成GEM | 3′端 | √ | PCR | 液滴 | 建库流程快,成本低,细胞可适性、捕获效率、通量高 | 非全长序列;样本要求高(80%活细胞数) |
SCRB-seq | 使用类似于Smart-seq的PCR扩增,同时集成barcode和UMI | 3′端 | √ | PCR | 流式分选 | 成本低,转录本精确量化,针对体积小、处理步骤少而优化 | 操作要求高,不能产生全长cDNA,3′偏好类似于CEL-seq |
单细胞测序方法 | 测序原理 | 区域 | UMI | 扩增 方法 | 捕获法 | 优点 | 缺点 |
---|---|---|---|---|---|---|---|
Smart-seq | 用含有PCR识别序列的引物和M-MLV RT | 全长 | × | PCR | 流式分选或显微操作 | 高转录本覆盖,可实现SNP和可变剪切分析 | 不能分析非poly(A)的RNA;reads不带有mRNA链特异性 |
Drop-seq | 基于微液滴技术,每个cDNA都用一个细胞特异性barcode和UMI标记 | 3′端 | √ | PCR | 液滴 | 建库流程快,成本低 | 需要微流控平台;细胞捕获率较低 |
CEL-seq | 通过逆转录和体外转录整合条形码和UMI;线性扩增 | 3′端 | √ | IVT | 微流控 | 错误率比较低 | 强烈的3′偏好;高丰度转录本被优先扩增;总RNA需求多 |
10x Genomics | 类似于Drop-seq,利用微流体“双十字”交叉系统分选,通过barcode磁珠-单细胞-油滴形成GEM | 3′端 | √ | PCR | 液滴 | 建库流程快,成本低,细胞可适性、捕获效率、通量高 | 非全长序列;样本要求高(80%活细胞数) |
SCRB-seq | 使用类似于Smart-seq的PCR扩增,同时集成barcode和UMI | 3′端 | √ | PCR | 流式分选 | 成本低,转录本精确量化,针对体积小、处理步骤少而优化 | 操作要求高,不能产生全长cDNA,3′偏好类似于CEL-seq |
[1] | Chung MS, Han SJ. Endometriosis-Associated Angiogenesis and Anti-angiogenic Therapy for Endometriosis[J]. Front Glob Womens Health, 2022, 3:856316. doi: 10.3389/fgwh.2022.856316. |
[2] | Cheng C, Chen W, Jin H, et al. A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell-Cell Communication[J]. Cells, 2023, 12(15):1970. doi: 10.3390/cells12151970. |
[3] |
Beccuti M, Calogero RA. Single-Cell RNAseq Clustering[J]. Methods Mol Biol, 2023, 2584:241-250. doi: 10.1007/978-1-0716-2756-3_12.
pmid: 36495454 |
[4] | Sun D, Guan X, Moran AE, et al. Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data[J]. Nat Biotechnol, 2022, 40(4):527-538. doi: 10.1038/s41587-021-01091-3. |
[5] | Zhang S, Li X, Lin J, et al. Review of single-cell RNA-seq data clustering for cell-type identification and characterization[J]. RNA, 2023, 29(5):517-530. doi: 10.1261/rna.078965.121. |
[6] |
Hao Y, Hao S, Andersen-Nissen E, et al. Integrated analysis of multimodal single-cell data[J]. Cell, 2021, 184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048.
pmid: 34062119 |
[7] | Ke M, Elshenawy B, Sheldon H, et al. Single cell RNA-sequencing: A powerful yet still challenging technology to study cellular heterogeneity[J]. Bioessays, 2022, 44(11):e2200084. doi: 10.1002/bies.202200084. |
[8] |
Jiang R, Sun T, Song D, et al. Statistics or biology: the zero-inflation controversy about scRNA-seq data[J]. Genome Biol, 2022, 23(1):31. doi: 10.1186/s13059-022-02601-5.
pmid: 35063006 |
[9] | Chu SK, Zhao S, Shyr Y, et al. Comprehensive evaluation of noise reduction methods for single-cell RNA sequencing data[J]. Brief Bioinform, 2022, 23(2):bbab565. doi: 10.1093/bib/bbab565. |
[10] | Sun Y, Kong L, Huang J, et al. A comprehensive survey of dimensionality reduction and clustering methods for single-cell and spatial transcriptomics data[J]. Brief Funct Genomics, 2024, 23(6):733-744. doi: 10.1093/bfgp/elae023. |
[11] | Gualandris A, Noghero A, Cora′ D, et al. Role of TGFβ1 and WNT6 in FGF2 and BMP4-driven endothelial differentiation of murine embryonic stem cells[J]. Angiogenesis, 2022, 25(1):113-128. doi: 10.1007/s10456-021-09815-4. |
[12] | Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies[J]. Angiogenesis, 2023, 26(3):313-347. doi: 10.1007/s10456-023-09876-7. |
[13] | Francis CR, Kushner EJ. Trafficking in blood vessel development[J]. Angiogenesis, 2022, 25(3):291-305. doi: 10.1007/s10456-022-09838-5. |
[14] | Shin S, Chung YJ, Moon SW, et al. Single-cell profiling identifies distinct hormonal, immunologic, and inflammatory signatures of endometriosis-constituting cells[J]. J Pathol, 2023, 261(3):323-334. doi: 10.1002/path.6178. |
[15] | Zhu S, Wang A, Xu W, et al. The heterogeneity of fibrosis and angiogenesis in endometriosis revealed by single-cell RNA-sequencing[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(2): 166602. doi: 10.1016/j.bbadis.2022.166602. |
[16] |
Tan Y, Flynn WF, Sivajothi S, et al. Single-cell analysis of endometriosis reveals a coordinated transcriptional programme driving immunotolerance and angiogenesis across eutopic and ectopic tissues[J]. Nat Cell Biol, 2022, 24(8):1306-1318. doi: 10.1038/s41556-022-00961-5.
pmid: 35864314 |
[17] | Zou L, Meng L, Xu Y, et al. Revealing the diagnostic value and immune infiltration of senescence-related genes in endometriosis: a combined single-cell and machine learning analysis[J]. Front Pharmacol, 2023, 14:1259467. doi: 10.3389/fphar.2023.1259467. |
[18] |
Guo L, Yang Q, Wei R, et al. Enhanced pericyte-endothelial interactions through NO-boosted extracellular vesicles drive revascularization in a mouse model of ischemic injury[J]. Nat Commun, 2023, 14(1):7334. doi: 10.1038/s41467-023-43153-x.
pmid: 37957174 |
[19] |
Brandt MM, van Dijk C, Maringanti R, et al. Transcriptome analysis reveals microvascular endothelial cell-dependent pericyte differentiation[J]. Sci Rep, 2019, 9(1):15586. doi: 10.1038/s41598-019-51838-x.
pmid: 31666598 |
[20] | Cartland SP, Patil MS, Kelland E, et al. The generation of stable microvessels in ischemia is mediated by endothelial cell derived TRAIL[J]. Sci Adv, 2024, 10(40):eadn8760. doi: 10.1126/sciadv.adn8760. |
[21] | Abramiuk M, Grywalska E, Małkowska P, et al. The Role of the Immune System in the Development of Endometriosis[J]. Cells, 2022, 11(13):2028. doi: 10.3390/cells11132028. |
[22] |
Li C, Zhao HL, Li YJ, et al. The expression and significance of leukemia inhibitory factor, interleukin-6 and vascular endothelial growth factor in Chinese patients with endometriosis[J]. Arch Gynecol Obstet, 2021, 304(1):163-170. doi: 10.1007/s00404-021-05980-5.
pmid: 33555431 |
[23] | Khodarahmian M, Amidi F, Moini A, et al. A randomized exploratory trial to assess the effects of resveratrol on VEGF and TNF-α 2 expression in endometriosis women[J]. J Reprod Immunol, 2021, 143:103248.doi: 10.1016/j.jri.2020.103248. |
[24] |
Zou G, Wang J, Xu X, et al. Cell subtypes and immune dysfunction in peritoneal fluid of endometriosis revealed by single-cell RNA-sequencing[J]. Cell Biosci, 2021, 11(1):98. doi: 10.1186/s13578-021-00613-5.
pmid: 34039410 |
[25] |
Ma J, Zhang L, Zhan H, et al. Single-cell transcriptomic analysis of endometriosis provides insights into fibroblast fates and immune cell heterogeneity[J]. Cell Biosci, 2021, 11(1):125. doi: 10.1186/s13578-021-00637-x.
pmid: 34233737 |
[26] | Ono Y, Yoshino O, Hiraoka T, et al. CD206+macrophage is an accelerator of endometriotic-like lesion via promoting angiogenesis in the endometriosis mouse model[J]. Sci Rep, 2021, 11(1):853. doi: 10.1038/s41598-020-79578-3. |
[27] |
Huang X, Wu L, Pei T, et al. Single-cell transcriptome analysis reveals endometrial immune microenvironment in minimal/mild endometriosis[J]. Clin Exp Immunol, 2023, 212(3):285-295. doi: 10.1093/cei/uxad029.
pmid: 36869723 |
[28] | Hogg C, Horne AW, Greaves E. Endometriosis-Associated Macrophages: Origin, Phenotype, and Function[J]. Front Endocrinol(Lausanne), 2020, 11:7. doi: 10.3389/fendo.2020.00007. |
[29] |
Ahn SH, Edwards AK, Singh SS, et al. IL-17A Contributes to the Pathogenesis of Endometriosis by Triggering Proinflammatory Cytokines and Angiogenic Growth Factors[J]. J Immunol, 2015, 195(6):2591-2600. doi: 10.4049/jimmunol.1501138.
pmid: 26259585 |
[30] |
Shih AJ, Adelson RP, Vashistha H, et al. Single-cell analysis of menstrual endometrial tissues defines phenotypes associated with endometriosis[J]. BMC Med, 2022, 20(1):315. doi: 10.1186/s12916-022-02500-3.
pmid: 36104692 |
[31] | Vissers G, Giacomozzi M, Verdurmen W, et al. The role of fibrosis in endometriosis: a systematic review[J]. Hum Reprod Update, 2024, 30(6):706-750. doi: 10.1093/humupd/dmae023. |
[32] |
Nanda A, K T, Banerjee P, et al. Cytokines, Angiogenesis, and Extracellular Matrix Degradation are Augmented by Oxidative Stress in Endometriosis[J]. Ann Lab Med, 2020, 40(5):390-397. doi: 10.3343/alm.2020.40.5.390.
pmid: 32311852 |
[33] | Noye TM, Lokman NA, Oehler MK, et al. S100A10 and Cancer Hallmarks: Structure, Functions, and its Emerging Role in Ovarian Cancer[J]. Int J Mol Sci, 2018, 19(12):4122. doi: 10.3390/ijms19124122. |
[34] |
Henze D, Doecke WD, Hornung D, et al. Endometriosis Leads to an Increased Trefoil Factor 3 Concentration in the Peritoneal Cavity but Does Not Alter Systemic Levels[J]. Reprod Sci, 2017, 24(2):258-267. doi: 10.1177/1933719116653676.
pmid: 27330011 |
[35] |
Fonseca M, Haro M, Wright KN, et al. Single-cell transcriptomic analysis of endometriosis[J]. Nat Genet, 2023, 55(2):255-267. doi: 10.1038/s41588-022-01254-1.
pmid: 36624343 |
[36] | Proestling K, Birner P, Gamperl S, et al. Enhanced epithelial to mesenchymal transition (EMT) and upregulated MYC in ectopic lesions contribute independently to endometriosis[J]. Reprod Biol Endocrinol, 2015, 13:75.doi: 10.1186/s12958-015-0063-7. |
[1] | SHAO Meng-yu, MA Sai-hua, GONG Zheng, ZHAO Xiao-li, ZHAO Zhi-mei. Pathogenesis of Endometriosis Complicated with Chronic Endometritis and Its Impact on Reproduction [J]. Journal of International Obstetrics and Gynecology, 2025, 52(3): 241-245. |
[2] | YIN Ting, CONG Hui-fang. Progress in Immunological of Endometriosis and Pain Sensitization [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 206-210. |
[3] | JIANG Ai-mei, ZHANG Xin-mei. Advances in the Treatment of Abdominal Wall Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 211-216. |
[4] | ZHANG Yun-feng, ZHANG Wan-yue, LU Yue, WANG Yang-yang, JING Jia-yu, MU Jing-yi, WANG Yue. Research Progress of ARID1A and PIK3CA Mutations in Malignant Transformation of Ovarian Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 19-22. |
[5] | SHI Bai-chao, WANG Yu, CHANG Hui, LU Feng-juan, GUAN Mu-xin, YU Jian-nan, WU Xiao-ke. Mechanism of Traditional Chinese Medicine and Natural Products in Improving Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 66-71. |
[6] | CHEN Xing-yu, WEI Ya-jing, LIANG Yan-chun. Advances in Uterine Leiomyosarcoma:Mapping Based on Genomics [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 641-647. |
[7] | GUO Xi, LIU Si-min, WEI Jia, YANG Yong-xiu. Malignant Transformation of Ovarian and Tube Endometriosis into Clear Cell Carcinoma: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 680-683. |
[8] | ZHANG Yan, ZHANG Yi-ming. A Case of Pelvic Abscess Following Oocyte Retrieval in A Patient with Adenomyosis and Ovarian Endometriosis Cyst [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 717-720. |
[9] | LI Hui-min, HU Ya-li, ZHANG Sen-huai, MA Xiao-mei, XU Fei-xue. Progress in the Application of High Intensity Focused Ultrasound Technology in Obstetric and Gynecological Diseases [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 486-491. |
[10] | GUO Xi, WEI Jia, YANG Yong-xiu. Hormonal Pathways and Regulatory Factors That Lead to Endometrial Disease [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 395-400. |
[11] | SUN Jia-fan, XU Wei, ZHU Shu, WANG Xiu-li. Effect of Dienogest on the Volume of Endometriosis Lesions [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 284-289. |
[12] | XU Qian, DUAN Hua, WANG Sha, AN Yuan-yuan. Clinical Analysis of 84 Cases of Cervical Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 302-305. |
[13] | YU Liang, YUAN Lin, MENG Huang-yang, YANG Yu-qin, ZHAO Ming-rui, ZHANG Lin, CHENG Wen-jun. The Prognosis Factors Abdominal Wall Endometriosis Associated Clear Cell Carcinoma: A Pooled Analysis Based on Case Reports [J]. Journal of International Obstetrics and Gynecology, 2024, 51(2): 220-227. |
[14] | ZHANG Wei-yue, YANG Jing, JI Jia-nan, LUO Cheng-yan. Research Progress on the Diagnosis and Treatment of Abdominal Wall Endometriosis-Associated Clear Cell Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2024, 51(1): 60-65. |
[15] | XU Ze-mei-hong, YANG Ru-yu, WU Qiong, LYU Yi, LIANG Yan-chun. The Potential Application of Spatial Transcriptome Technology in the Research of Immune Microenvironment of Endometriosi [J]. Journal of International Obstetrics and Gynecology, 2024, 51(1): 82-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||