Journal of International Obstetrics and Gynecology ›› 2021, Vol. 48 ›› Issue (3): 322-327.doi: 10.12280/gjfckx.20200836
• Research on Gynecological Malignancies Review • Previous Articles Next Articles
LI He-tong, WANG Wei, HAO Min()
Received:
2020-09-08
Published:
2021-06-15
Online:
2021-06-25
Contact:
HAO Min
E-mail:2yuanhaomin@163.com
LI He-tong, WANG Wei, HAO Min. Progress of CircRNAs as A Promising Biomarker and Therapeutic Target for Cervical Cancer[J]. Journal of International Obstetrics and Gynecology, 2021, 48(3): 322-327.
Add to citation manager EndNote|Ris|BibTeX
circRNA | 表达水平 | 作用机制通路 | 功能 | 参考文献 |
---|---|---|---|---|
has_circ_0004771(circNRIP1) | 上调 | has_circ_0004771/miR-629-3p/PTP4A1/ERK1/2 | 促进宫颈癌细胞的增殖、侵袭和迁移;淋巴脉管间隙浸润 | [ |
has_circ_0001038 | 上调 | has_circ_0001038/miR-337-3p/CNNM3, MACC1 | 分别促进宫颈癌细胞的增殖、侵袭 | [ |
has_circ_0018289 | 上调 | has_circ_0018289/miR-497 | 促进宫颈癌细胞的增殖、侵袭和迁移 | [ |
circRNA8924 | 上调 | circRNA8924/miR-518d-5p/519-5p/CBX8 | 促进宫颈癌细胞的增殖、侵袭和迁移 | [ |
circ_0067934 | 上调 | circ_0067934/miRNA-545/EIF3C | 促进宫颈癌细胞增殖、菌落形成、迁移、侵袭和EMT | [ |
has_circ_0060467(circMYBL2) | 上调 | has_circ_0060467/miR-361-3p | 促进宫颈癌细胞增殖、侵袭和EMT过程 | [ |
circ_0005576 | 上调 | circ_0005576/miR-153-3p/KIF20A | 促进细胞增殖、集落形成、迁移和侵袭 | [ |
has_circ_101996 | 上调 | has_circRNA_101996/miRNA-8075/TPX2 | 促进宫颈癌细胞的增殖、侵袭和迁移 | [ |
circ-HIPK3 | 上调 | circ-HIPK3/miR-338-3p/HIF-1α | 促进宫颈癌细胞的增殖、侵袭和迁移 | [ |
circMYLK | 上调 | circMYLK/miR-1301-3p/RHEB/mTOR | 促进宫颈癌细胞克隆、增殖能力 | [ |
circ-0033550(circ-AKT1) | 上调 | circ-AKT1/miR-942-5p/AKT1 | 促进宫颈癌细胞增殖、侵袭及EMT | [ |
has_circ_0001445(circSMARCA5) | 下调 | circSMARCA5/miR-620 | 促进宫颈癌细胞的增殖、侵袭和迁移并诱导细胞周期停滞 | [ |
has_circ_0023404 | 上调 | has_circ_0023404/miR-136/TFCP2/YAP | 促进宫颈癌细胞的增殖、侵袭和迁移并诱导细胞周期停滞 | [ |
has_circ_0000263 | 上调 | has_circ_0000263/miRNA-150-5p/MDM4/p53 | 促进宫颈癌细胞的增殖、侵袭,影响凋亡和细胞周期 | [ |
circRNA-000284 | 上调 | circRNA-000284/miRNA-506/Snail-2 | 促进细胞增殖和侵袭同时使细胞周期停滞在G0/G1期 | [ |
circ-ATP8A2 | 上调 | circ-ATP8A2/miR-433/EGFR | 促进宫颈癌细胞的增殖、侵袭和迁移及促进细胞凋亡 | [ |
circEIF4G2 | 上调 | circEIF4G2/miR218/HOXA1 | 细胞增殖、集落形成、迁移和侵袭 | [ |
circ_0004214(circAMOTL1) | 上调 | circAMOTL1/miR-485-5p/AMOTL1 | 促进宫颈癌细胞增殖 | [ |
has_circ_0000745 | 上调 | has_circ_0000745/E-cadherin | 促进宫颈癌细胞的增殖、侵袭和迁移 | [ |
circSLC26A4 | 上调 | QKI/circSLC26A4/miR-1287-5p/HOXA7 | 促进宫颈癌细胞的增殖、侵袭 | [ |
circRNA | 表达水平 | 作用机制通路 | 功能 | 参考文献 |
---|---|---|---|---|
has_circ_0004771(circNRIP1) | 上调 | has_circ_0004771/miR-629-3p/PTP4A1/ERK1/2 | 促进宫颈癌细胞的增殖、侵袭和迁移;淋巴脉管间隙浸润 | [ |
has_circ_0001038 | 上调 | has_circ_0001038/miR-337-3p/CNNM3, MACC1 | 分别促进宫颈癌细胞的增殖、侵袭 | [ |
has_circ_0018289 | 上调 | has_circ_0018289/miR-497 | 促进宫颈癌细胞的增殖、侵袭和迁移 | [ |
circRNA8924 | 上调 | circRNA8924/miR-518d-5p/519-5p/CBX8 | 促进宫颈癌细胞的增殖、侵袭和迁移 | [ |
circ_0067934 | 上调 | circ_0067934/miRNA-545/EIF3C | 促进宫颈癌细胞增殖、菌落形成、迁移、侵袭和EMT | [ |
has_circ_0060467(circMYBL2) | 上调 | has_circ_0060467/miR-361-3p | 促进宫颈癌细胞增殖、侵袭和EMT过程 | [ |
circ_0005576 | 上调 | circ_0005576/miR-153-3p/KIF20A | 促进细胞增殖、集落形成、迁移和侵袭 | [ |
has_circ_101996 | 上调 | has_circRNA_101996/miRNA-8075/TPX2 | 促进宫颈癌细胞的增殖、侵袭和迁移 | [ |
circ-HIPK3 | 上调 | circ-HIPK3/miR-338-3p/HIF-1α | 促进宫颈癌细胞的增殖、侵袭和迁移 | [ |
circMYLK | 上调 | circMYLK/miR-1301-3p/RHEB/mTOR | 促进宫颈癌细胞克隆、增殖能力 | [ |
circ-0033550(circ-AKT1) | 上调 | circ-AKT1/miR-942-5p/AKT1 | 促进宫颈癌细胞增殖、侵袭及EMT | [ |
has_circ_0001445(circSMARCA5) | 下调 | circSMARCA5/miR-620 | 促进宫颈癌细胞的增殖、侵袭和迁移并诱导细胞周期停滞 | [ |
has_circ_0023404 | 上调 | has_circ_0023404/miR-136/TFCP2/YAP | 促进宫颈癌细胞的增殖、侵袭和迁移并诱导细胞周期停滞 | [ |
has_circ_0000263 | 上调 | has_circ_0000263/miRNA-150-5p/MDM4/p53 | 促进宫颈癌细胞的增殖、侵袭,影响凋亡和细胞周期 | [ |
circRNA-000284 | 上调 | circRNA-000284/miRNA-506/Snail-2 | 促进细胞增殖和侵袭同时使细胞周期停滞在G0/G1期 | [ |
circ-ATP8A2 | 上调 | circ-ATP8A2/miR-433/EGFR | 促进宫颈癌细胞的增殖、侵袭和迁移及促进细胞凋亡 | [ |
circEIF4G2 | 上调 | circEIF4G2/miR218/HOXA1 | 细胞增殖、集落形成、迁移和侵袭 | [ |
circ_0004214(circAMOTL1) | 上调 | circAMOTL1/miR-485-5p/AMOTL1 | 促进宫颈癌细胞增殖 | [ |
has_circ_0000745 | 上调 | has_circ_0000745/E-cadherin | 促进宫颈癌细胞的增殖、侵袭和迁移 | [ |
circSLC26A4 | 上调 | QKI/circSLC26A4/miR-1287-5p/HOXA7 | 促进宫颈癌细胞的增殖、侵袭 | [ |
[1] |
王伟, 郝敏, 陈春林, 等. 年轻Ⅰa2~Ⅱa2期子宫颈癌患者的构成比变化趋势及临床病理特征分析[J]. 中华妇产科杂志, 2019,54(10):666-672. doi: 10.3760/cma.j.issn.0529?567x.2019.10.004.
doi: 10.3760/cma.j.issn.0529?567x.2019.10.004 |
[2] |
Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A, 1976,73(11):3852-3856. doi: 10.1073/pnas.73.11.3852.
doi: 10.1073/pnas.73.11.3852 pmid: 1069269 |
[3] |
Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types[J]. PLoS One, 2012,7(2):e30733. doi: 10.1371/journal.pone.0030733.
doi: 10.1371/journal.pone.0030733 |
[4] |
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013,19(2):141-157. doi: 10.1261/rna.035667.112.
doi: 10.1261/rna.035667.112 |
[5] |
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs[J]. Nat Biotechnol, 2014,32(5):453-461. doi: 10.1038/nbt.2890.
doi: 10.1038/nbt.2890 |
[6] |
Han YN, Xia SQ, Zhang YY, et al. Circular RNAs: A novel type of biomarker and genetic tools in cancer[J]. Oncotarget, 2017,8(38):64551-64563. doi: 10.18632/oncotarget.18350.
doi: 10.18632/oncotarget.18350 |
[7] |
Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013,495(7441):384-388. doi: 10.1038/nature11993.
doi: 10.1038/nature11993 |
[8] |
Han D, Li J, Wang H, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression[J]. Hepatology, 2017,66(4):1151-1164. doi: 10.1002/hep.29270.
doi: 10.1002/hep.29270 |
[9] |
Weng W, Wei Q, Toden S, et al. Circular RNA ciRS-7-A Promising Prognostic Biomarker and a Potential Therapeutic Target in Colorectal Cancer[J]. Clin Cancer Res, 2017,23(14):3918-3928. doi: 10.1158/1078-0432.CCR-16-2541.
doi: 10.1158/1078-0432.CCR-16-2541 |
[10] |
Zhou Y, Shen L, Wang YZ, et al. The potential of ciRS-7 for predicting onset and prognosis of cervical cancer[J]. Neoplasma, 2020,67(2):312-322. doi: 10.4149/neo_2019_190415N334.
doi: 10.4149/neo_2019_190415N334 pmid: 31884800 |
[11] |
Du WW, Fang L, Yang W, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity[J]. Cell Death Differ, 2017,24(2):357-370. doi: 10.1038/cdd.2016.133.
doi: 10.1038/cdd.2016.133 |
[12] |
Abdelmohsen K, Panda AC, Munk R, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1[J]. RNA Biol, 2017,14(3):361-369. doi: 10.1080/15476286.2017.1279788.
doi: 10.1080/15476286.2017.1279788 pmid: 28080204 |
[13] |
Liang WC, Wong CW, Liang PP, et al. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway[J]. Genome Biol, 2019,20(1):84. doi: 10.1186/s13059-019-1685-4.
doi: 10.1186/s13059-019-1685-4 |
[14] |
Zheng X, Chen L, Zhou Y, et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling[J]. Mol Cancer, 2019,18(1):47. doi: 10.1186/s12943-019-1010-6.
doi: 10.1186/s12943-019-1010-6 pmid: 30925892 |
[15] |
Wu F, Zhou J. CircAGFG1 promotes cervical cancer progression via miR-370-3p/RAF1 signaling[J]. BMC Cancer, 2019,19(1):1067. doi: 10.1186/s12885-019-6269-x.
doi: 10.1186/s12885-019-6269-x |
[16] |
Li X, Ma N, Zhang Y, et al. Circular RNA circNRIP1 promotes migration and invasion in cervical cancer by sponging miR-629-3p and regulating the PTP4A1/ERK1/2 pathway[J]. Cell Death Dis, 2020,11(5):399. doi: 10.1038/s41419-020-2607-9.
doi: 10.1038/s41419-020-2607-9 |
[17] |
Wang Y, Wang L, Wang W, et al. Overexpression of circular RNA hsa_circ_0001038 promotes cervical cancer cell progression by acting as a ceRNA for miR-337-3p to regulate cyclin-M3 and metastasis-associated in colon cancer 1 expression[J]. Gene, 2020,733:144273. doi: 10.1016/j.gene.2019.144273.
doi: 10.1016/j.gene.2019.144273 |
[18] |
Gao YL, Zhang MY, Xu B, et al. Circular RNA expression profiles reveal that hsa_circ_0018289 is up-regulated in cervical cancer and promotes the tumorigenesis[J]. Oncotarget, 2017,8(49):86625-86633. doi: 10.18632/oncotarget.21257.
doi: 10.18632/oncotarget.21257 |
[19] |
He J, Lv X, Zeng Z. A potential disease monitoring and prognostic biomarker in cervical cancer patients: The clinical application of circular RNA_0018289[J]. J Clin Lab Anal, 2020,34(8):e23340. doi: 10.1002/jcla.23340.
doi: 10.1002/jcla.23340 |
[20] |
Liu J, Wang D, Long Z, et al. CircRNA8924 Promotes Cervical Cancer Cell Proliferation, Migration and Invasion by Competitively Binding to MiR-518d-5p /519-5p Family and Modulating the Expression of CBX8[J]. Cell Physiol Biochem, 2018,48(1):173-184. doi: 10.1159/000491716.
doi: 10.1159/000491716 |
[21] |
Hu C, Wang Y, Li A, et al. Overexpressed circ_0067934 acts as an oncogene to facilitate cervical cancer progression via the miR-545/EIF3C axis[J]. J Cell Physiol, 2019,234(6):9225-9232. doi: 10.1002/jcp.27601.
doi: 10.1002/jcp.27601 |
[22] |
Wang J, Li H, Liang Z. circ-MYBL2 Serves As A Sponge For miR-361-3p Promoting Cervical Cancer Cells Proliferation And Invasion[J]. Onco Targets Ther, 2019,12:9957-9964. doi: 10.2147/OTT.S218976.
doi: 10.2147/OTT.S218976 |
[23] |
Ma H, Tian T, Liu X, et al. Upregulated circ_0005576 facilitates cervical cancer progression via the miR-153/KIF20A axis[J]. Biomed Pharmacother, 2019,118:109311. doi: 10.1016/j.biopha.2019.109311.
doi: 10.1016/j.biopha.2019.109311 |
[24] |
Song T, Xu A, Zhang Z, et al. CircRNA hsa_circRNA_101996 increases cervical cancer proliferation and invasion through activating TPX2 expression by restraining miR-8075[J]. J Cell Physiol, 2019,234(8):14296-14305. doi: 10.1002/jcp.28128.
doi: 10.1002/jcp.28128 |
[25] |
Qian W, Huang T, Feng W. Circular RNA HIPK3 Promotes EMT of Cervical Cancer Through Sponging miR-338-3p to Up-Regulate HIF-1α[J]. Cancer Manag Res, 2020,12:177-187. doi: 10.2147/CMAR.S232235.
doi: 10.2147/CMAR.S232235 |
[26] |
Chen R, Mao L, Shi R, et al. circRNA MYLK Accelerates Cervical Cancer via Up-Regulation of RHEB and Activation of mTOR Signaling[J]. Cancer Manag Res, 2020,12:3611-3621. doi: 10.2147/CMAR.S238172.
doi: 10.2147/CMAR.S238172 pmid: 32547198 |
[27] |
Ou R, Mo L, Tang H, et al. circRNA-AKT1 Sequesters miR-942-5p to Upregulate AKT1 and Promote Cervical Cancer Progression[J]. Mol Ther Nucleic Acids, 2020,20:308-322. doi: 10.1016/j.omtn.2020.01.003.
doi: 10.1016/j.omtn.2020.01.003 |
[28] |
Tian J, Liang L. Involvement of circular RNA SMARCA5/microRNA-620 axis in the regulation of cervical cancer cell proliferation, invasion and migration[J]. Eur Rev Med Pharmacol Sci, 2018,22(24):8589-8598. doi: 10.26355/eurrev_201812_16622.
doi: 16622 pmid: 30575898 |
[29] |
Zhang J, Zhao X, Zhang J, et al. Circular RNA hsa_circ_0023404 exerts an oncogenic role in cervical cancer through regulating miR-136/TFCP2/YAP pathway[J]. Biochem Biophys Res Commun, 2018,501(2):428-433. doi: 10.1016/j.bbrc.2018.05.006.
doi: 10.1016/j.bbrc.2018.05.006 |
[30] |
Cai H, Zhang P, Xu M, et al. Circular RNA hsa_circ_0000263 participates in cervical cancer development by regulating target gene of miR-150-5p[J]. J Cell Physiol, 2019,234(7):11391-11400. doi: 10.1002/jcp.27796.
doi: 10.1002/jcp.27796 |
[31] | Ma HB, Yao YN, Yu JJ, et al. Extensive profiling of circular RNAs and the potential regulatory role of circRNA-000284 in cell proliferation and invasion of cervical cancer via sponging miR-506[J]. Am J Transl Res, 2018,10(2):592-604. |
[32] |
Ding L, Zhang H. Circ-ATP8A2 promotes cell proliferation and invasion as a ceRNA to target EGFR by sponging miR-433 in cervical cancer[J]. Gene, 2019,705:103-108. doi: 10.1016/j.gene.2019.04.068.
doi: S0378-1119(19)30426-3 pmid: 31029604 |
[33] |
Mao Y, Zhang L, Li Y. circEIF4G2 modulates the malignant features of cervical cancer via the miR-218/HOXA1 pathway[J]. Mol Med Rep, 2019,19(5):3714-3722. doi: 10.3892/mmr.2019.10032.
doi: 10.3892/mmr.2019.10032 |
[34] |
Ou R, Lv J, Zhang Q, et al. circAMOTL1 Motivates AMOTL1 Expression to Facilitate Cervical Cancer Growth[J]. Mol Ther Nucleic Acids, 2020,19:50-60. doi: 10.1016/j.omtn.2019.09.022.
doi: 10.1016/j.omtn.2019.09.022 |
[35] |
Jiao J, Zhang T, Jiao X, et al. hsa_circ_0000745 promotes cervical cancer by increasing cell proliferation, migration, and invasion[J]. J Cell Physiol, 2020,235(2):1287-1295. doi: 10.1002/jcp.29045.
doi: 10.1002/jcp.29045 |
[36] |
Ji F, Du R, Chen T, et al. Circular RNA circSLC26A4 Accelerates Cervical Cancer Progression via miR-1287-5p/HOXA7 Axis[J]. Mol Ther Nucleic Acids, 2020,19:413-420. doi: 10.1016/j.omtn.2019. 11.032.
doi: 10.1016/j.omtn.2019. 11.032 |
[37] |
Wang M, Yu F, Wu W, et al. Circular RNAs: A novel type of non-coding RNA and their potential implications in antiviral immunity[J]. Int J Biol Sci, 2017,13(12):1497-1506. doi: 10.7150/ijbs.22531.
doi: 10.7150/ijbs.22531 pmid: 29230098 |
[38] |
Zheng SR, Zhang HR, Zhang ZF, et al. Human papillomavirus 16 E7 oncoprotein alters the expression profiles of circular RNAs in Caski cells[J]. J Cancer, 2018,9(20):3755-3764. doi: 10.7150/jca.24253.
doi: 10.7150/jca.24253 |
[39] |
Zhao J, Lee EE, Kim J, et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus[J]. Nat Commun, 2019,10(1):2300. doi: 10.1038/s41467-019-10246-5.
doi: 10.1038/s41467-019-10246-5 |
[40] |
Li S, Teng S, Xu J, et al. Microarray is an efficient tool for circRNA profiling[J]. Brief Bioinform, 2019,20(4):1420-1433. doi: 10.1093/bib/bby006.
doi: 10.1093/bib/bby006 |
[41] |
Gong J, Jiang H, Shu C, et al. Integrated analysis of circular RNA-associated ceRNA network in cervical cancer: Observational Study[J]. Medicine(Baltimore), 2019,98(34):e16922. doi: 10.1097/MD.0000000000016922.
doi: 10.1097/MD.0000000000016922 |
[1] | CHEN Xiao-juan, ZHANG Yan-xin. A Case of Full-Term Delivery in A Pregnant Patient with Hemophilia A [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 158-160. |
[2] | ZHANG Hao-sheng, WEI Fang. Research Progress of Nectin-4 in Gynecologic Malignancies [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 165-168. |
[3] | GUO Jing, ZHANG Mao-xiang, ZHOU Chun-he, LIU Si-ning, LI Hui-yan. The Progress of Mendelian Randomization in the Study of the Causal Relationship between Exposure Factors and Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 169-174. |
[4] | CHAI Ling-na, LI Yan-li, SHI Jie, GAO Han, OUYANG Xi-yan, CHENG Shi-yu. Clinical Application of Indocyanine Green Tracing of Sentinel Lymph Nodes in Early Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 175-179. |
[5] | JIANG Ai-mei, ZHANG Xin-mei. Advances in the Treatment of Abdominal Wall Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 211-216. |
[6] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
[7] | HOU Chun-yan, DU Xiu-ping. Two Cases of Spontaneous Uterine Rupture in the Middle and Late Stages of Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 110-113. |
[8] | ZHONG Pei-qu, ZHAO Li-jian, ZOU Xin-xin. A Case of Rudimentary Horn Pregnancy Undergoing Expectant Treatment until the Third Trimester [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 114-116. |
[9] | HU Ming-zhu, LIU Li-wen, HUANG Lei. The Relationship between Vaginal Microecology and Cervical Cancer in HIV-Infected Women [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 13-18. |
[10] | PAN Qi, FENG Tong-fu, JIN Jing, WU Ying, DU Xin. Laparoscopic Resection of Giant Mature Retroperitoneal Teratoma in An Adult: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 28-31. |
[11] | JIA Yan-feng, WU Zhen-zhen, WANG Wei-hong, WANG Yue-yuan, LI Juan. A Case of Primary Ovarian Adenosquamous Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 32-36. |
[12] | SONG Li-fang, WU Zhen-zhen, MAO Bao-hong, ZHAO Xiao-li, LIU Qing. A Case of Isolated Lymph Node Metastasis from Ovarian Cancer to the Inguinal Region [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 37-41. |
[13] | SHI Bai-chao, WANG Yu, CHANG Hui, LU Feng-juan, GUAN Mu-xin, YU Jian-nan, WU Xiao-ke. Mechanism of Traditional Chinese Medicine and Natural Products in Improving Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 66-71. |
[14] | LI Heng-bing, YUAN Hai-ning, ZHANG Yun-jie, ZHANG Jiang-lin, GUO Zi-zhen, SUN Zhen-gao. Advances in Exosome-Based Therapy for Chronic Endometritis by Modulating the Immune Microenvironment [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 72-78. |
[15] | ZHANG Ye, CHEN Qiao-yun, ZHAO Jia-yi, CHEN Lu, LIU Jian-rong. Progress in the Application of Nanoparticles in the Prevention and Treatment of Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 8-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||