Journal of International Obstetrics and Gynecology ›› 2023, Vol. 50 ›› Issue (3): 246-250.doi: 10.12280/gjfckx.20230069
• Gynecological Disease & Related Research: Review • Previous Articles Next Articles
LI Shang-jin, ZHANG Bing, CONG Shan-shan, ZHAO Shao-jie()
Received:
2023-02-08
Published:
2023-06-15
Online:
2023-06-27
Contact:
ZHAO Shao-jie, E-mail: LI Shang-jin, ZHANG Bing, CONG Shan-shan, ZHAO Shao-jie. Research Progress of Glucose Metabolism Reprogramming in Endometriosis[J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 246-250.
Add to citation manager EndNote|Ris|BibTeX
药物 | 靶点 | 机制 |
---|---|---|
抑制葡萄糖摄取与乳酸转运 | ||
阿托伐他汀和白藜芦醇 | GLUT1和GLUT3 | 抑制糖酵解和新生血管形成[ |
桂芝福灵胶囊 | GLUT4 | 抑制高糖的摄入[ |
AZD0095 | MCT4 | 抑制乳酸的堆积[ |
抑制糖代谢相关酶 | ||
3-溴丙酮酸 | HK2 | 抑制糖酵解,减少子宫内膜间质细胞的迁移和增殖[ |
PFKFB3抑制剂 | PKM2 | 抑制糖酵解,调节线粒体功能[ |
二氯乙酸盐(dichloroacetate,DCA) | PDK和PDH | 涉及机制多,有前景,见下文详述 |
苏木心材 | PDK1 | 抑制糖酵解;增加活性氧、下调膜电位致异位子宫内膜细胞凋亡[ |
糖酵解相关调控因子 | ||
2-甲氧基雌二醇 | HIF-1α | 抑制HIF-1α下游蛋白,如GLUT1[ |
芍药醇 | HIF-1α | 抑制HIF-1α诱导的病变[ |
姜黄素 | HIF通路 | 改善缺氧、降低炎症,下调HIF-1α表达[ |
KRIBB11 | HSF1 | 调控PFKFB3从而抑制糖酵解[ |
YL-109 | hsc70互作蛋白 | hsc70互作蛋白诱导高迁移率族蛋白1泛素化和降解,抑制糖酵解[ |
药物 | 靶点 | 机制 |
---|---|---|
抑制葡萄糖摄取与乳酸转运 | ||
阿托伐他汀和白藜芦醇 | GLUT1和GLUT3 | 抑制糖酵解和新生血管形成[ |
桂芝福灵胶囊 | GLUT4 | 抑制高糖的摄入[ |
AZD0095 | MCT4 | 抑制乳酸的堆积[ |
抑制糖代谢相关酶 | ||
3-溴丙酮酸 | HK2 | 抑制糖酵解,减少子宫内膜间质细胞的迁移和增殖[ |
PFKFB3抑制剂 | PKM2 | 抑制糖酵解,调节线粒体功能[ |
二氯乙酸盐(dichloroacetate,DCA) | PDK和PDH | 涉及机制多,有前景,见下文详述 |
苏木心材 | PDK1 | 抑制糖酵解;增加活性氧、下调膜电位致异位子宫内膜细胞凋亡[ |
糖酵解相关调控因子 | ||
2-甲氧基雌二醇 | HIF-1α | 抑制HIF-1α下游蛋白,如GLUT1[ |
芍药醇 | HIF-1α | 抑制HIF-1α诱导的病变[ |
姜黄素 | HIF通路 | 改善缺氧、降低炎症,下调HIF-1α表达[ |
KRIBB11 | HSF1 | 调控PFKFB3从而抑制糖酵解[ |
YL-109 | hsc70互作蛋白 | hsc70互作蛋白诱导高迁移率族蛋白1泛素化和降解,抑制糖酵解[ |
[1] |
Saunders P, Horne AW. Endometriosis: Etiology, pathobiology, and therapeutic prospects[J]. Cell, 2021, 184(11):2807-2824. doi: 10.1016/j.cell.2021.04.041.
doi: 10.1016/j.cell.2021.04.041 pmid: 34048704 |
[2] |
Vannuccini S, Clemenza S, Rossi M, et al. Hormonal treatments for endometriosis: The endocrine background[J]. Rev Endocr Metab Disord, 2022, 23(3):333-355. doi: 10.1007/s11154-021-09666-w.
doi: 10.1007/s11154-021-09666-w |
[3] |
Cui Y, Li C, Sang F, et al. Natural products targeting glycolytic signaling pathways-an updated review on anti-cancer therapy[J]. Front Pharmacol, 2022, 13:1035882. doi: 10.3389/fphar.2022.1035882.
doi: 10.3389/fphar.2022.1035882 |
[4] |
Lu C, Qiao P, Fu R, et al. Phosphorylation of PFKFB4 by PIM2 promotes anaerobic glycolysis and cell proliferation in endometriosis[J]. Cell Death Dis, 2022, 13(9):790. doi: 10.1038/s41419-022-05241-6.
doi: 10.1038/s41419-022-05241-6 pmid: 36109523 |
[5] |
Lu J, Ling X, Liu L, et al. Emerging hallmarks of endometriosis metabolism: A promising target for the treatment of endometriosis[J]. Biochim Biophys Acta Mol Cell Res, 2023, 1870(1): 119381. doi: 10.1016/j.bbamcr.2022.119381.
doi: 10.1016/j.bbamcr.2022.119381 |
[6] |
Hou S, Lei S, Peng H, et al. Downregulating HK2 inhibits proliferation of endometrial stromal cells through a noncanonical pathway involving phosphorylation of signal transducer and activator of transcription 1 in endometriosis[J]. Biol Reprod, 2022, 107(2):488-499. doi: 10.1093/biolre/ioac081.
doi: 10.1093/biolre/ioac081 |
[7] |
Horne AW, Ahmad SF, Carter R, et al. Repurposing dichloroacetate for the treatment of women with endometriosis[J]. Proc Natl Acad Sci U S A, 2019, 116(51):25389-25391. doi: 10.1073/pnas.1916144116.
doi: 10.1073/pnas.1916144116 |
[8] |
Kobayashi H, Imanaka S. Understanding the molecular mechanisms of macrophage polarization and metabolic reprogramming in endometriosis: A narrative review[J]. Reprod Med Biol, 2022, 21(1):e12488. doi: 10.1002/rmb2.12488.
doi: 10.1002/rmb2.12488 |
[9] |
Kobayashi H, Shigetomi H, Imanaka S. Nonhormonal therapy for endometriosis based on energy metabolism regulation[J]. Reprod Fertil, 2021, 2(4):C42-C57. doi: 10.1530/RAF-21-0053.
doi: 10.1530/RAF-21-0053 pmid: 35118411 |
[10] |
McKinnon B, Bertschi D, Wotzkow C, et al. Glucose transporter expression in eutopic endometrial tissue and ectopic endometriotic lesions[J]. J Mol Endocrinol, 2014, 52(2):169-179. doi: 10.1530/JME-13-0194.
doi: 10.1530/JME-13-0194 pmid: 24412827 |
[11] |
Jones BC, Pohlmann PR, Clarke R, et al. Treatment against glucose-dependent cancers through metabolic PFKFB3 targeting of glycolytic flux[J]. Cancer Metastasis Rev, 2022, 41(2):447-458. doi: 10.1007/s10555-022-10027-5.
doi: 10.1007/s10555-022-10027-5 |
[12] |
Yao Q, Jing G, Zhang X, et al. Cinnamic acid inhibits cell viability, invasion, and glycolysis in primary endometrial stromal cells by suppressing NF-κB-induced transcription of PKM2[J]. Biosci Rep, 2021 Sep 9:BSR20211828. doi: 10.1042/BSR20211828.
doi: 10.1042/BSR20211828 |
[13] |
Young VJ, Brown JK, Maybin J, et al. Transforming growth factor-β induced Warburg-like metabolic reprogramming may underpin the development of peritoneal endometriosis[J]. J Clin Endocrinol Metab, 2014, 99(9):3450-3459. doi: 10.1210/jc.2014-1026.
doi: 10.1210/jc.2014-1026 pmid: 24796928 |
[14] |
Kocianova E, Piatrikova V, Golias T. Revisiting the Warburg Effect with Focus on Lactate[J]. Cancers(Basel), 2022, 14(24):6028. doi: 10.3390/cancers14246028.
doi: 10.3390/cancers14246028 |
[15] |
Zheng J, Dai Y, Lin X, et al. Hypoxia-induced lactate dehydrogenase A protects cells from apoptosis in endometriosis[J]. Mol Med Rep, 2021, 24(3):637. doi: 10.3892/mmr.2021.12276.
doi: 10.3892/mmr.2021.12276 |
[16] |
Atkins HM, Bharadwaj MS, O′Brien Cox A, et al. Endometrium and endometriosis tissue mitochondrial energy metabolism in a nonhuman primate model[J]. Reprod Biol Endocrinol, 2019, 17(1):70. doi: 10.1186/s12958-019-0513-8.
doi: 10.1186/s12958-019-0513-8 |
[17] |
Gou Y, Wang H, Wang T, et al. Ectopic endometriotic stromal cells-derived lactate induces M2 macrophage polarization via Mettl3/Trib1/ERK/STAT3 signalling pathway in endometriosis[J]. Immunology, 2023, 168(3):389-402. doi: 10.1111/imm.13574.
doi: 10.1111/imm.13574 |
[18] |
Contreras-Baeza Y, Sandoval PY, Alarcón R, et al. Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments[J]. J Biol Chem, 2019, 294(52):20135-20147. doi: 10.1074/jbc.RA119.009093.
doi: 10.1074/jbc.RA119.009093 pmid: 31719150 |
[19] |
Xin Q, Wang H, Li Q, et al. Lactylation: a Passing Fad or the Future of Posttranslational Modification[J]. Inflammation, 2022, 45(4):1419-1429. doi: 10.1007/s10753-022-01637-w.
doi: 10.1007/s10753-022-01637-w |
[20] |
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779):575-580. doi: 10.1038/s41586-019-1678-1.
doi: 10.1038/s41586-019-1678-1 |
[21] |
Zhou Y, Jin Y, Wang Y, et al. Hypoxia activates the unfolded protein response signaling network: An adaptive mechanism for endometriosis[J]. Front Endocrinol(Lausanne), 2022, 13:945578. doi: 10.3389/fendo.2022.945578.
doi: 10.3389/fendo.2022.945578 |
[22] |
Young VJ, Ahmad SF, Brown JK, et al. ID2 mediates the transforming growth factor-β1-induced Warburg-like effect seen in the peritoneum of women with endometriosis[J]. Mol Hum Reprod, 2016, 22(9):648-654. doi: 10.1093/molehr/gaw045.
doi: 10.1093/molehr/gaw045 pmid: 27385728 |
[23] |
Wang Y, Xiu J, Yang T, et al. HSF1 promotes endometriosis development and glycolysis by up-regulating PFKFB3 expression[J]. Reprod Biol Endocrinol, 2021, 19(1):86. doi: 10.1186/s12958-021-00770-9.
doi: 10.1186/s12958-021-00770-9 |
[24] |
Ling X, Lu J, Wang X, et al. Ovarian tumor B1-mediated heat shock transcription factor 1 deubiquitination is critical for glycolysis and development of endometriosis[J]. iScience, 2022, 25(11):105363. doi: 10.1016/j.isci.2022.105363.
doi: 10.1016/j.isci.2022.105363 |
[25] |
Bahrami A, Ayen E, Razi M, et al. Effects of atorvastatin and resveratrol against the experimental endometriosis; evidence for glucose and monocarboxylate transporters, neoangiogenesis[J]. Life Sci, 2021, 272:119230. doi: 10.1016/j.lfs.2021.119230.
doi: 10.1016/j.lfs.2021.119230 |
[26] |
Zhou J, Ding ZM, Hardiman PJ. Understanding the Role of Gui-Zhi-Fu-Ling-Capsules (Chinese Medicine) for Treatment of Endometriosis in the Rat Model: Using NMR Based Metabolomics[J]. Evid Based Complement Alternat Med, 2018, 2018:9864963. doi: 10.1155/2018/9864963.
doi: 10.1155/2018/9864963 |
[27] |
Goldberg FW, Kettle JG, Lamont GM, et al. Discovery of Clinical Candidate AZD0095, a Selective Inhibitor of Monocarboxylate Transporter 4 (MCT4) for Oncology[J]. J Med Chem, 2023, 66(1):384-397. doi: 10.1021/acs.jmedchem.2c01342.
doi: 10.1021/acs.jmedchem.2c01342 |
[28] |
Wang H, Liang Z, Gou Y, et al. FTO-dependent N(6)-Methyladenosine regulates the progression of endometriosis via the ATG5/PKM2 Axis[J]. Cell Signal, 2022, 98:110406. doi: 10.1016/j.cellsig.2022.110406.
doi: 10.1016/j.cellsig.2022.110406 |
[29] |
Kim BS, Chung TW, Choi HJ, et al. Caesalpinia sappan induces apoptotic cell death in ectopic endometrial 12Z cells through suppressing pyruvate dehydrogenase kinase 1 expression[J]. Exp Ther Med, 2021, 21(4):357. doi: 10.3892/etm.2021.9788.
doi: 10.3892/etm.2021.9788 |
[30] |
Becker CM, Rohwer N, Funakoshi T, et al. 2-methoxyestradiol inhibits hypoxia-inducible factor-1α and suppresses growth of lesions in a mouse model of endometriosis[J]. Am J Pathol, 2008, 172(2):534-544. doi: 10.2353/ajpath.2008.061244.
doi: 10.2353/ajpath.2008.061244 |
[31] |
Pang C, Wu Z, Xu X, et al. Paeonol alleviates migration and invasion of endometrial stromal cells by reducing HIF-1α-regulated autophagy in endometriosis[J]. Front Biosci(Landmark Ed), 2021, 26(9):485-495. doi: 10.52586/4961.
doi: 10.52586/4961 |
[32] |
Ding J, Mei S, Cheng W, et al. Curcumin treats endometriosis in mice by the HIF signaling pathway[J]. Am J Transl Res, 2022, 14(4):2184-2198.
pmid: 35559378 |
[33] |
Sun Y, Wang Q, Wang M, et al. CHIP induces ubiquitination and degradation of HMGB1 to regulate glycolysis in ovarian endometriosis[J]. Cell Mol Life Sci, 2022, 80(1):13. doi: 10.1007/s00018-022-04637-z.
doi: 10.1007/s00018-022-04637-z pmid: 36536161 |
[34] |
Reckzeh ES, Waldmann H. Small-Molecule Inhibition of Glucose Transporters GLUT-1-4[J]. Chembiochem, 2020, 21(1/2):45-52. doi: 10.1002/cbic.201900544.
doi: 10.1002/cbic.201900544 |
[35] |
Viola A, Munari F, Sánchez-Rodríguez R, et al. The Metabolic Signature of Macrophage Responses[J]. Front Immunol, 2019, 10:1462. doi: 10.3389/fimmu.2019.01462.
doi: 10.3389/fimmu.2019.01462 pmid: 31333642 |
[36] |
Goswami KK, Banerjee S, Bose A, et al. Lactic acid in alternative polarization and function of macrophages in tumor microenvironment[J]. Hum Immunol, 2022, 83(5):409-417. doi: 10.1016/j.humimm.2022.02.007.
doi: 10.1016/j.humimm.2022.02.007 pmid: 35300874 |
[37] |
Kobayashi H, Kimura M, Maruyama S, et al. Revisiting estrogen-dependent signaling pathways in endometriosis: Potential targets for non-hormonal therapeutics[J]. Eur J Obstet Gynecol Reprod Biol, 2021, 258:103-110. doi: 10.1016/j.ejogrb.2020.12.044.
doi: 10.1016/j.ejogrb.2020.12.044 pmid: 33421806 |
[38] |
Leow HW, Koscielniak M, Williams L, et al. Dichloroacetate as a possible treatment for endometriosis-associated pain: a single-arm open-label exploratory clinical trial (EPiC)[J]. Pilot Feasibility Stud, 2021, 7(1):67. doi: 10.1186/s40814-021-00797-0.
doi: 10.1186/s40814-021-00797-0 pmid: 33712086 |
[39] |
Sharma D, Singh M, Rani R. Role of LDH in tumor glycolysis: Regulation of LDHA by small molecules for cancer therapeutics[J]. Semin Cancer Biol, 2022, 87:184-195. doi: 10.1016/j.semcancer.2022.11.007.
doi: 10.1016/j.semcancer.2022.11.007 pmid: 36371026 |
[1] | CAO Xiu-rong, ZHOU Wen-bai, FAN Xiang, WANG Yi-fei, ZHU Peng-feng. Single-Cell RNA Sequencing Analysis of the Angiogenesis Mechanism in Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 199-205. |
[2] | YIN Ting, CONG Hui-fang. Progress in Immunological of Endometriosis and Pain Sensitization [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 206-210. |
[3] | JIANG Ai-mei, ZHANG Xin-mei. Advances in the Treatment of Abdominal Wall Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 211-216. |
[4] | ZHANG Yun-feng, ZHANG Wan-yue, LU Yue, WANG Yang-yang, JING Jia-yu, MU Jing-yi, WANG Yue. Research Progress of ARID1A and PIK3CA Mutations in Malignant Transformation of Ovarian Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 19-22. |
[5] | SHI Bai-chao, WANG Yu, CHANG Hui, LU Feng-juan, GUAN Mu-xin, YU Jian-nan, WU Xiao-ke. Mechanism of Traditional Chinese Medicine and Natural Products in Improving Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 66-71. |
[6] | GUO Xi, LIU Si-min, WEI Jia, YANG Yong-xiu. Malignant Transformation of Ovarian and Tube Endometriosis into Clear Cell Carcinoma: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 680-683. |
[7] | ZHANG Yan, ZHANG Yi-ming. A Case of Pelvic Abscess Following Oocyte Retrieval in A Patient with Adenomyosis and Ovarian Endometriosis Cyst [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 717-720. |
[8] | LI Hui-min, HU Ya-li, ZHANG Sen-huai, MA Xiao-mei, XU Fei-xue. Progress in the Application of High Intensity Focused Ultrasound Technology in Obstetric and Gynecological Diseases [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 486-491. |
[9] | GUO Xi, WEI Jia, YANG Yong-xiu. Hormonal Pathways and Regulatory Factors That Lead to Endometrial Disease [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 395-400. |
[10] | SUN Jia-fan, XU Wei, ZHU Shu, WANG Xiu-li. Effect of Dienogest on the Volume of Endometriosis Lesions [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 284-289. |
[11] | XU Qian, DUAN Hua, WANG Sha, AN Yuan-yuan. Clinical Analysis of 84 Cases of Cervical Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 302-305. |
[12] | YU Liang, YUAN Lin, MENG Huang-yang, YANG Yu-qin, ZHAO Ming-rui, ZHANG Lin, CHENG Wen-jun. The Prognosis Factors Abdominal Wall Endometriosis Associated Clear Cell Carcinoma: A Pooled Analysis Based on Case Reports [J]. Journal of International Obstetrics and Gynecology, 2024, 51(2): 220-227. |
[13] | ZHANG Wen-yang, WANG Xi-peng. Mechanisms of Resistance to PARP Inhibitor and Strategies to Improve Its Sensitivity in Epithelial Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2024, 51(1): 52-59. |
[14] | ZHANG Wei-yue, YANG Jing, JI Jia-nan, LUO Cheng-yan. Research Progress on the Diagnosis and Treatment of Abdominal Wall Endometriosis-Associated Clear Cell Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2024, 51(1): 60-65. |
[15] | XU Ze-mei-hong, YANG Ru-yu, WU Qiong, LYU Yi, LIANG Yan-chun. The Potential Application of Spatial Transcriptome Technology in the Research of Immune Microenvironment of Endometriosi [J]. Journal of International Obstetrics and Gynecology, 2024, 51(1): 82-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||