[1] |
Selçuk I, Bozdağ G. Recurrence of endometriosis; risk factors, mechanisms and biomarkers; review of the literature[J]. J Turk Ger Gynecol Assoc, 2013,14(2):98-103. doi: 10.5152/jtgga.2013.52385.
doi: 10.5152/jtgga.2013.52385
pmid: 24592083
|
[2] |
朱小琳, 韩亚光, 韩延华, 等. 子宫内膜异位症相关信号通路研究进展[J]. 国际妇产科学杂志, 2019,46(4):370-373,391. doi: 10.3969/j.issn.1674-1870.2019.04.002.
|
[3] |
马雪松, 张宗峰. 上皮-间质转化在子宫内膜异位症发病机制中的作用[J]. 国际妇产科学杂志, 2020,47(1):101-105. doi: 10.3969/j.issn.1674-1870.2020.01.024.
|
[4] |
Drabsch Y, ten Dijke P. TGF-β signalling and its role in cancer progression and metastasis[J]. Cancer Metastasis Rev, 2012,31(3/4):553-568. doi: 10.1007/s10555-012-9375-7.
doi: 10.1007/s10555-012-9375-7
|
[5] |
冯春蝶, 王福玲, 袁芳, 等. IL-17、IL-6和TGF-β在子宫内膜异位症患者组织的表达[J]. 中国免疫学杂志, 2013,29(3):243-246. doi: 10.3969/j.issn.1000-484X.2013.03.005.
|
[6] |
Soni UK, Chadchan SB, Kumar V, et al. A high level of TGF-B1 promotes endometriosis development via cell migration, adhesiveness, colonization, and invasiveness?[J]. Biol Reprod, 2019,100(4):917-938. doi: 10.1093/biolre/ioy242.
doi: 10.1093/biolre/ioy242
pmid: 30423016
|
[7] |
Logan PC, Yango P, Tran ND. Endometrial Stromal and Epithelial Cells Exhibit Unique Aberrant Molecular Defects in Patients With Endometriosis[J]. Reprod Sci, 2018,25(1):140-159. doi: 10.1177/1933719117704905.
doi: 10.1177/1933719117704905
pmid: 28490276
|
[8] |
Guo H, Ingolia NT, Weissman JS, et al. Mammalian microRNAs predominantly act to decrease target mRNA levels[J]. Nature, 2010,466(7308):835-840. doi: 10.1038/nature09267.
doi: 10.1038/nature09267
pmid: 20703300
|
[9] |
Wang S, Zhang M, Zhang T, et al. microRNA-141 inhibits TGF-β1-induced epithelial-to-mesenchymal transition through inhibition of the TGF-β1/SMAD2 signalling pathway in endometriosis[J]. Arch Gynecol Obstet, 2020,301(3):707-714. doi: 10.1007/s00404-019-05429-w.
doi: 10.1007/s00404-019-05429-w
pmid: 31903498
|
[10] |
冯婉琴, 刘敏娟, 马颖. 信号通路在子宫内膜异位症发病中的作用研究进展[J]. 山东医药, 2018,58(42):96-99. doi: 10.3969/j.issn.1002-266X.2018.42.030.
|
[11] |
Körbel C, Gerstner MD, Menger MD, et al. Notch signaling controls sprouting angiogenesis of endometriotic lesions[J]. Angiogenesis, 2018,21(1):37-46. doi: 10.1007/s10456-017-9580-7.
doi: 10.1007/s10456-017-9580-7
pmid: 28993956
|
[12] |
Qi S, Yan L, Liu Z, et al. Melatonin inhibits 17β-estradiol-induced migration, invasion and epithelial-mesenchymal transition in normal and endometriotic endometrial epithelial cells[J]. Reprod Biol Endocrinol, 2018,16(1):62. doi: 10.1186/s12958-018-0375-5.
doi: 10.1186/s12958-018-0375-5
pmid: 29935526
|
[13] |
Luo Y, Wang D, Chen S, et al. The role of miR-34c-5p/Notch in epithelial-mesenchymal transition (EMT) in endometriosis[J]. Cell Signal, 2020,72:109666. doi: 10.1016/j.cellsig.2020.109666.
doi: 10.1016/j.cellsig.2020.109666
pmid: 32353411
|
[14] |
Zhang M, Wang S, Tang L, et al. Downregulated circular RNA hsa_circ_0067301 regulates epithelial-mesenchymal transition in endometriosis via the miR-141/Notch signaling pathway[J]. Biochem Biophys Res Commun, 2019,514(1):71-77. doi: 10.1016/j.bbrc.2019.04.109.
doi: 10.1016/j.bbrc.2019.04.109
pmid: 31023528
|
[15] |
郎景和. 关于子宫内膜异位症的再认识及其意义[J]. 中国工程科学, 2009,11(10):137-142.
|
[16] |
赵玲娟, 冯其金, 高瑷洁, 等. Wnt/β-catenin信号通路在子宫内膜异位症中西医诊治中的研究进展[J]. 解放军医药杂志, 2019,31(7):113-116. doi: 10.3969/j.issn.2095-140X.2019.07.027.
|
[17] |
Nanda A, Thangapandi K, Banerjee P, et al. Cytokines, Angiogenesis, and Extracellular Matrix Degradation are Augmented by Oxidative Stress in Endometriosis[J]. Ann Lab Med, 2020,40(5):390-397. doi: 10.3343/alm.2020.40.5.390.
doi: 10.3343/alm.2020.40.5.390
pmid: 32311852
|
[18] |
González-Ramos R, Rocco J, Rojas C, et al. Physiologic activation of nuclear factor kappa-B in the endometrium during the menstrual cycle is altered in endometriosis patients[J]. Fertil Steril, 2012,97(3):645-651. doi: 10.1016/j.fertnstert.2011.12.006.
doi: 10.1016/j.fertnstert.2011.12.006
|
[19] |
Kaponis A, Iwabe T, Taniguchi F, et al. The role of NF-kappaB in endometriosis[J]. Front Biosci(Schol Ed), 2012,4:1213-1234. doi: 10.2741/s327.
|
[20] |
Zhang L, Li HH, Yuan M, et al. Exosomal miR-22-3p derived from peritoneal macrophages enhances proliferation, migration, and invasion of ectopic endometrial stromal cells through regulation of the SIRT1/NF-κB signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2020,24(2):571-580. doi: 10.26355/eurrev_202001_20033.
doi: 10.26355/eurrev_202001_20033
pmid: 32016958
|
[21] |
Yu J, Chen LH, Zhang B, et al. The modulation of endometriosis by lncRNA MALAT1 via NF-κB/iNOS[J]. Eur Rev Med Pharmacol Sci, 2019,23(10):4073-4080. doi: 10.26355/eurrev_201905_17908.
doi: 10.26355/eurrev_201905_17908
pmid: 31173276
|
[22] |
Matsuzaki S, Darcha C. In vitro effects of a small-molecule antagonist of the Tcf/β-catenin complex on endometrial and endometriotic cells of patients with endometriosis[J]. PLoS One, 2013,8(4):e61690. doi: 10.1371/journal.pone.0061690.
doi: 10.1371/journal.pone.0061690
pmid: 23626717
|
[23] |
Zhu X, Li Y, Zhou R, et al. Knockdown of E-cadherin expression of endometrial epithelial cells may activate Wnt/β-catenin pathway in vitro[J]. Arch Gynecol Obstet, 2018,297(1):117-123. doi: 10.1007/s00404-017-4560-0.
doi: 10.1007/s00404-017-4560-0
pmid: 29018948
|
[24] |
Heinosalo T, Gabriel M, Kallio L, et al. Secreted frizzled-related protein 2 (SFRP2) expression promotes lesion proliferation via canonical WNT signaling and indicates lesion borders in extraovarian endometriosis[J]. Hum Reprod, 2018,33(5):817-831. doi: 10.1093/humrep/dey026.
doi: 10.1093/humrep/dey026
pmid: 29462326
|
[25] |
Zhu H, Cao XX, Liu J, et al. MicroRNA-488 inhibits endometrial glandular epithelial cell proliferation, migration, and invasion in endometriosis mice via Wnt by inhibiting FZD7[J]. J Cell Mol Med, 2019,23(4):2419-2430. doi: 10.1111/jcmm.14078.
doi: 10.1111/jcmm.14078
pmid: 30729701
|
[26] |
Mai H, Wei Y, Yin Y, et al. LINC01541 overexpression attenuates the 17β-Estradiol-induced migration and invasion capabilities of endometrial stromal cells[J]. Syst Biol Reprod Med, 2019,65(3):214-222. doi: 10.1080/19396368.2018.1549290.
doi: 10.1080/19396368.2018.1549290
pmid: 30608887
|
[27] |
马金赫, 王德莹, 陈秀慧, 等. PI3K/Akt/mTOR和MAPK信号通路与子宫内膜异位症的研究进展[J]. 现代妇产科进展, 2015,24(1):78-80. doi: 10.13283/j.cnki.xdfckjz.2015.01.023.
|
[28] |
Liu JX, Luo MQ, Xia M, et al. Marine compound catunaregin inhibits angiogenesis through the modulation of phosphorylation of akt and eNOS in vivo and in vitro[J]. Mar Drugs, 2014,12(5):2790-2801. doi: 10.3390/md12052790.
doi: 10.3390/md12052790
pmid: 24824025
|
[29] |
Jana S, Chatterjee K, Ray AK, et al. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis[J]. PLoS One, 2016,11(10):e0163540. doi: 10.1371/journal.pone.0163540.
doi: 10.1371/journal.pone.0163540
pmid: 27695098
|
[30] |
Cao Y, Ye Q, Zhuang M, et al. Ginsenoside Rg3 inhibits angiogenesis in a rat model of endometriosis through the VEGFR-2-mediated PI3K/Akt/mTOR signaling pathway[J]. PLoS One, 2017,12(11):e0186520. doi: 10.1371/journal.pone.0186520.
doi: 10.1371/journal.pone.0186520
pmid: 29140979
|
[31] |
Liu Y, Lu C, Fan L, et al. MiR-199a-5p Targets ZEB1 to Inhibit the Epithelial-Mesenchymal Transition of Ovarian Ectopic Endometrial Stromal Cells Via PI3K/Akt/mTOR Signal Pathway In Vitro and In Vivo[J]. Reprod Sci, 2020,27(1):110-118. doi: 10.1007/s43032-019-00016-5.
doi: 10.1007/s43032-019-00016-5
pmid: 32046378
|