[1] |
Liu J, Wang XF, Wang Y, et al. The incidence rate, high-risk factors, and short- and long-term adverse outcomes of fetal growth restriction: a report from Mainland China[J]. Medicine(Baltimore), 2014, 93(27):e210. doi: 10.1097/MD.0000000000000210.
doi: 10.1097/MD.0000000000000210
|
[2] |
Freedman AA, Goldstein JA, Miller GE, et al. Seasonal Variation of Chronic Villitis of Unknown Etiology[J]. Pediatr Dev Pathol, 2020, 23(4):253-259. doi: 10.1177/1093526619892353.
doi: 10.1177/1093526619892353
|
[3] |
Lee J, Romero R, Xu Y, et al. A signature of maternal anti-fetal rejection in spontaneous preterm birth: chronic chorioamnionitis, anti-human leukocyte antigen antibodies, and C4d[J]. PLoS One, 2011, 6(2):e16806. doi: 10.1371/journal.pone.0016806.
doi: 10.1371/journal.pone.0016806
|
[4] |
Kim CJ, Romero R, Chaemsaithong P, et al. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance[J]. Am J Obstet Gynecol, 2015, 213(Suppl 4):S53-S69. doi: 10.1016/j.ajog.2015.08.041.
doi: 10.1016/j.ajog.2015.08.041
|
[5] |
Derricott H, Jones RL, Heazell AE. Investigating the association of villitis of unknown etiology with stillbirth and fetal growth restriction- a systematic review[J]. Placenta, 2013, 34(10):856-862. doi: 10.1016/j.placenta.2013.07.003.
doi: 10.1016/j.placenta.2013.07.003
pmid: 23906543
|
[6] |
Soni S, Rath G, Prasad CP, et al. Apoptosis and Bcl-2 protein expression in human placenta over the course of normal pregnancy[J]. Anat Histol Embryol, 2010, 39(5):426-431. doi: 10.1111/j.1439-0264.2010.01012.x.
doi: 10.1111/j.1439-0264.2010.01012.x
pmid: 20608924
|
[7] |
Scarini JF, Rodrigues NM, Sabino WL, et al. M1 macrophages involved in the pathogenesis of placental chronic villitis of unknown etiology[J]. J Matern Fetal Neonatal Med, 2021 Jan 6: 1-6. doi: 10.1080/14767058.2020.1869930.Epub ahead of print.
doi: 10.1080/14767058.2020.1869930
|
[8] |
Sato Y. Inflammatory lesions in placental pathology[J]. J Obstet Gynaecol Res, 2022, 48(1):58-65. doi: 10.1111/jog.14932.
doi: 10.1111/jog.14932
|
[9] |
Ravishankar S, Redline RW. What Obstetricians Need to Know About Placental Pathology[J]. Obstet Gynecol Clin North Am, 2020, 47(1):29-48. doi: 10.1016/j.ogc.2019.10.007.
doi: 10.1016/j.ogc.2019.10.007
|
[10] |
Enninga EAL, Raber P, Quinton RA, et al. Maternal T Cells in the Human Placental Villi Support an Allograft Response during Noninfectious Villitis[J]. J Immunol, 2020, 204(11):2931-2939. doi: 10.4049/jimmunol.1901297.
doi: 10.4049/jimmunol.1901297
|
[11] |
Benzon S, Zekić Tomaš S, Benzon Z, et al. Involvement of T lymphocytes in the placentae with villitis of unknown etiology from pregnancies complicated with preeclampsia[J]. J Matern Fetal Neonatal Med, 2016, 29(7):1055-1060. doi: 10.3109/14767058.2015.1032239.
doi: 10.3109/14767058.2015.1032239
|
[12] |
Tamblyn JA, Lissauer DM, Powell R, et al. The immunological basis of villitis of unknown etiology-review[J]. Placenta, 2013, 34(10):846-855. doi: 10.1016/j.placenta.2013.07.002.
doi: 10.1016/j.placenta.2013.07.002
pmid: 23891153
|
[13] |
Enninga E, Leontovich AA, Fedyshyn B, et al. Upregulation of HLA-Class I and II in Placentas Diagnosed with Villitis of Unknown Etiology[J]. Reprod Sci, 2020, 27(5):1129-1138. doi: 10.1007/s43032-019-00101-9.
doi: 10.1007/s43032-019-00101-9
|
[14] |
Reyes L, Golos TG. Hofbauer Cells: Their Role in Healthy and Complicated Pregnancy[J]. Front Immunol, 2018, 9:2628. doi: 10.3389/fimmu.2018.02628.
doi: 10.3389/fimmu.2018.02628
|
[15] |
Feist H, Hussein K, Stucki-Koch A, et al. Villitis of unknown etiology and chronic deciduitis are not associated with human papilloma virus and enterovirus infection[J]. Virchows Arch, 2020, 477(1):73-81. doi: 10.1007/s00428-020-02765-0.
doi: 10.1007/s00428-020-02765-0
|
[16] |
Derricott H, Heazell A, Greenwood SL, et al. A novel in vitro model of villitis of unknown etiology demonstrates altered placental hormone and cytokine profile[J]. Am J Reprod Immunol, 2017, 78(5). doi: 10.1111/aji.12725.
doi: 10.1111/aji.12725
|
[17] |
Ito Y, Matsuoka K, Uesato T, et al. Increased expression of perforin, granzyme B, and C5b-9 in villitis of unknown etiology[J]. Placenta, 2015, 36(5):531-537. doi: 10.1016/j.placenta.2015.02.004.
doi: 10.1016/j.placenta.2015.02.004
pmid: 25725937
|
[18] |
Wang Z, Zibrila AI, Liu SH, et al. Acetylcholine ameliorated TNF-α-induced primary trophoblast malfunction via muscarinic receptors[J]. Biol Reprod, 2020, 103(6):1238-1248. doi: 10.1093/biolre/ioaa158.
doi: 10.1093/biolre/ioaa158
|
[19] |
Li X, Zhou B, Han X, et al. Effect of nicotine on placental inflammation and apoptosis in preeclampsia-like model[J]. Life Sci, 2020, 261:118314. doi: 10.1016/j.lfs.2020.118314.
doi: 10.1016/j.lfs.2020.118314
|
[20] |
张艳君, 赵宗峰, 周梅, 等. IL-17联合IFN-γ体外诱导RAW264.7细胞增殖和凋亡的影响[J]. 口腔医学, 2019, 39(2):108-112. doi: 10.13591/j.cnki.kqyx.2019.02.003.
doi: 10.13591/j.cnki.kqyx.2019.02.003
|
[21] |
郭兵, 杨斌, 吴雨哲, 等. γ-干扰素促进Fas配体诱导血管平滑肌细胞凋亡[J]. 中华实验外科杂志, 2014, 31(4):706-708. doi: 10.3760/cma.j.issn.1001-9030.2014.04.004.
doi: 10.3760/cma.j.issn.1001-9030.2014.04.004
|
[22] |
Liu H, Wang W, Liu C. Increased expression of IFN-γ in preeclampsia impairs human trophoblast invasion via a SOCS1/JAK/STAT1 feedback loop[J]. Exp Ther Med, 2021, 21(2):112. doi: 10.3892/etm.2020.9544.
doi: 10.3892/etm.2020.9544
|
[23] |
Hu Y, Tan R, MacCalman CD, et al. IFN-gamma-mediated extravillous trophoblast outgrowth inhibition in first trimester explant culture: a role for insulin-like growth factors[J]. Mol Hum Reprod, 2008, 14(5):281-289. doi: 10.1093/molehr/gan018.
doi: 10.1093/molehr/gan018
|
[24] |
Du L, He F, Kuang L, et al. eNOS/iNOS and endoplasmic reticulum stress-induced apoptosis in the placentas of patients with preeclampsia[J]. J Hum Hypertens, 2017, 31(1):49-55. doi: 10.1038/jhh.2016.17.
doi: 10.1038/jhh.2016.17
pmid: 27030287
|
[25] |
Labarrere CA, Hardin JW, Haas DM, et al. Chronic villitis of unknown etiology and massive chronic intervillositis have similar immune cell composition[J]. Placenta, 2015, 36(6):681-686. doi: 10.1016/j.placenta.2015.03.008.
doi: 10.1016/j.placenta.2015.03.008
pmid: 25911290
|
[26] |
Zhang Y, Liu W, Wu M, et al. PFKFB3 regulates lipopolysaccharide-induced excessive inflammation and cellular dysfunction in HTR-8/Svneo cells: Implications for the role of PFKFB3 in preeclampsia[J]. Placenta, 2021, 106:67-78. doi: 10.1016/j.placenta.2021.02.014.
doi: 10.1016/j.placenta.2021.02.014
pmid: 33684599
|
[27] |
Tannetta D, Masliukaite I, Vatish M, et al. Update of syncytiotrophoblast derived extracellular vesicles in normal pregnancy and preeclampsia[J]. J Reprod Immunol, 2017, 119:98-106. doi: 10.1016/j.jri.2016.08.008.
doi: S0165-0378(16)30388-6
pmid: 27613663
|
[28] |
Spann RA, Lawson WJ, Bidwell GL 3rd, et al. Rodent vertical sleeve gastrectomy alters maternal immune health and fetoplacental development[J]. Clin Sci(Lond), 2018, 132(2):295-312. doi: 10.1042/CS20171416.
doi: 10.1042/CS20171416
|
[29] |
Liu L, Zhang Y, Wang YK, et al. Progesterone inhibited endoplasmic reticulum stress associated apoptosis induced by interleukin-1β via the GRP78/PERK/CHOP pathway in BeWo cells[J]. J Obstet Gynaecol Res, 2018, 44(3):463-473. doi: 10.1111/jog.13549.
doi: 10.1111/jog.13549
|
[30] |
Brien ME, Duval C, Palacios J, et al. Uric Acid Crystals Induce Placental Inflammation and Alter Trophoblast Function via an IL-1-Dependent Pathway: Implications for Fetal Growth Restriction[J]. J Immunol, 2017, 198(1):443-451. doi: 10.4049/jimmunol.1601179.
doi: 10.4049/jimmunol.1601179
|
[31] |
Hwa Im D, Kim YN, Cho HJ, et al. Placental Pathologic Changes Associated with Fetal Growth Restriction and Consequent Neonatal Outcomes[J]. Fetal Pediatr Pathol, 2021, 40(5):430-441. doi: 10.1080/15513815.2020.1723147.
doi: 10.1080/15513815.2020.1723147
|
[32] |
Sun DD, Wu HB, Ping ZP, et al. PLAC1 Regulates the Occurrence of Fetal Growth Restriction by Inhibiting the Apoptosis of Trophoblast Cells[J]. Ann Clin Lab Sci, 2021, 51(2):182-189.
|
[33] |
Kawabe A, Takai Y, Tamaru J, et al. Placental abruption possibly due to parvovirus B19 infection[J]. Springerplus, 2016, 5(1):1280. doi: 10.1186/s40064-016-2946-2.
doi: 10.1186/s40064-016-2946-2
pmid: 27547655
|