国际妇产科学杂志 ›› 2023, Vol. 50 ›› Issue (1): 54-58.doi: 10.12280/gjfckx.20220530
收稿日期:
2022-07-02
出版日期:
2023-02-15
发布日期:
2023-03-02
通讯作者:
程蔚蔚,E-mail:基金资助:
Received:
2022-07-02
Published:
2023-02-15
Online:
2023-03-02
Contact:
CHENG Wei-wei, E-mail: 摘要:
子痫前期(pre-eclampsia)是妊娠期常见并发症之一,是导致孕产妇和围生儿死亡的重要原因。子痫前期的发生与胎盘滋养细胞功能障碍密切相关。胎盘滋养细胞侵袭不全和子宫螺旋动脉重铸异常是子痫前期发生的主要病理机制。磷脂酰肌醇3激酶/蛋白激酶B(phosphatidylinositol-3 kinase/protein kinase B,PI3K/Akt)通路对胎盘滋养细胞的增殖、存活、凋亡、迁移和侵袭等过程具有重要调节作用。非编码RNA(non-coding RNA,ncRNA)中的微小RNA、长链非编码RNA和环状RNA具有重要的多水平基因调控功能,在PI3K/Akt通路中发挥重要调节作用,影响胎盘滋养细胞的功能,与子痫前期的发生、发展相关。综述近年子痫前期PI3K/Akt通路相关ncRNA的研究进展,为探索和发现子痫前期发病机制中的关键分子提供参考。
徐丹晨, 程蔚蔚. 子痫前期PI3K/Akt通路相关非编码RNA的研究进展[J]. 国际妇产科学杂志, 2023, 50(1): 54-58.
XU Dan-chen, CHENG Wei-wei. Research Progress of Non-Coding RNAs Relating to PI3K/Akt Pathway in Pre-Eclampsia[J]. Journal of International Obstetrics and Gynecology, 2023, 50(1): 54-58.
[1] |
Poon LC, Shennan A, Hyett JA, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention[J]. Int J Gynaecol Obstet, 2019, 145(Suppl 1):1-33. doi: 10.1002/ijgo.12802.
doi: 10.1002/ijgo.12802 |
[2] |
Knöfler M, Haider S, Saleh L, et al. Human placenta and trophoblast development: key molecular mechanisms and model systems[J]. Cell Mol Life Sci, 2019, 76(18):3479-3496. doi: 10.1007/s00018-019-03104-6.
doi: 10.1007/s00018-019-03104-6 pmid: 31049600 |
[3] |
Chappell LC, Cluver CA, Kingdom J, et al. Pre-eclampsia[J]. Lancet, 2021, 398(10297):341-354. doi: 10.1016/S0140-6736(20)32335-7.
doi: 10.1016/S0140-6736(20)32335-7 |
[4] |
Lv Y, Lu C, Ji X, et al. Roles of microRNAs in preeclampsia[J]. J Cell Physiol, 2019, 234(2):1052-1061. doi: 10.1002/jcp.27291.
doi: 10.1002/jcp.27291 pmid: 30256424 |
[5] |
Lim KH, Zhou Y, Janatpour M, et al. Human cytotrophoblast differentiation/invasion is abnormal in pre-eclampsia[J]. Am J Pathol, 1997, 151(6):1809-1818.
pmid: 9403732 |
[6] |
Raguema N, Moustadraf S, Bertagnolli M. Immune and Apoptosis Mechanisms Regulating Placental Development and Vascularization in Preeclampsia[J]. Front Physiol, 2020, 11:98. doi: 10.3389/fphys.2020.00098.
doi: 10.3389/fphys.2020.00098 pmid: 32116801 |
[7] |
Farah O, Nguyen C, Tekkatte C, et al. Trophoblast lineage-specific differentiation and associated alterations in preeclampsia and fetal growth restriction[J]. Placenta, 2020, 102:4-9. doi: 10.1016/j.placenta.2020.02.007.
doi: 10.1016/j.placenta.2020.02.007 pmid: 33218578 |
[8] |
Nakashima A, Aoki A, Kusabiraki T, et al. Autophagy regulation in preeclampsia: Pros and cons[J]. J Reprod Immunol, 2017, 123:17-23. doi: 10.1016/j.jri.2017.08.006.
doi: S0165-0378(17)30184-5 pmid: 28869810 |
[9] |
徐利本, 吴朝阳, 王远东. PI3K/Akt信号传导通路在肿瘤发生发展及治疗中的作用[J]. 现代肿瘤医学, 2021, 29(1):177-180. doi: 10.3969/j.issn.1672-4992.2021.01.040.
doi: 10.3969/j.issn.1672-4992.2021.01.040 |
[10] |
Sun N, Qin S, Zhang L, et al. Roles of noncoding RNAs in preeclampsia[J]. Reprod Biol Endocrinol, 2021, 19(1):100. doi: 10.1186/s12958-021-00783-4.
doi: 10.1186/s12958-021-00783-4 |
[11] |
Chan JJ, Tay Y. Noncoding RNA: RNA Regulatory Networks in Cancer[J]. Int J Mol Sci, 2018, 19(5):1310. doi: 10.3390/ijms19051310.
doi: 10.3390/ijms19051310 |
[12] |
Liu Y, Liu N, Liu Q. Constructing a ceRNA-immunoregulatory network associated with the development and prognosis of human atherosclerosis through weighted gene co-expression network analysis[J]. Aging (Albany NY), 2021, 13(2):3080-3100. doi: 10.18632/aging.202486.
doi: 10.18632/aging.202486 |
[13] |
Zhang Z, Yang T, Xiao J. Circular RNAs: Promising Biomarkers for Human Diseases[J]. EBioMedicine, 2018, 34:267-274. doi: 10.1016/j.ebiom.2018.07.036.
doi: S2352-3964(18)30280-9 pmid: 30078734 |
[14] |
Liu S, Xie X, Lei H, et al. Identification of Key circRNAs/lncRNAs/miRNAs/mRNAs and Pathways in Preeclampsia Using Bioinformatics Analysis[J]. Med Sci Monit, 2019, 25:1679-1693. doi: 10.12659/MSM.912801.
doi: 10.12659/MSM.912801 |
[15] |
Munjas J, Sopić M, Stefanović A, et al. Non-Coding RNAs in Preeclampsia-Molecular Mechanisms and Diagnostic Potential[J]. Int J Mol Sci, 2021, 22(19):10652. doi: 10.3390/ijms221910652.
doi: 10.3390/ijms221910652 |
[16] |
Skalis G, Katsi V, Miliou A, et al. MicroRNAs in Preeclampsia[J]. Microrna, 2019, 8(1):28-35. doi: 10.2174/2211536607666180813123303.
doi: 10.2174/2211536607666180813123303 pmid: 30101723 |
[17] |
Eskandari F, Rezaei M, Mohammadpour-Gharehbagh A, et al. The association of pri-miRNA-26a1 rs7372209 polymorphism and Preeclampsia susceptibility[J]. Clin Exp Hypertens, 2019, 41(3):268-273. doi: 10.1080/10641963.2018.1469643.
doi: 10.1080/10641963.2018.1469643 |
[18] |
Chen A, Yu R, Jiang S, et al. Recent Advances of MicroRNAs, Long Non-coding RNAs, and Circular RNAs in Preeclampsia[J]. Front Physiol, 2021, 12:659638. doi: 10.3389/fphys.2021.659638.
doi: 10.3389/fphys.2021.659638 |
[19] |
李鹏云, 王艳, 闫欢, 等. 子痫前期中lncRNA对滋养细胞的作用及机制研究[J]. 现代妇产科进展, 2017, 26(1):70-72. doi: 10.13283/j.cnki.xdfckjz.2017.01.019.
doi: 10.13283/j.cnki.xdfckjz.2017.01.019 |
[20] |
Mytareli C, Delivanis DA, Athanassouli F, et al. The Diagnostic, Prognostic and Therapeutic Role of miRNAs in Adrenocortical Carcinoma: A Systematic Review[J]. Biomedicines, 2021, 9(11):1501. doi: 10.3390/biomedicines9111501.
doi: 10.3390/biomedicines9111501 |
[21] |
Yang X, Meng T. Long Noncoding RNA in Preeclampsia: Transcriptional Noise or Innovative Indicators?[J]. Biomed Res Int, 2019, 2019:5437621. doi: 10.1155/2019/5437621.
doi: 10.1155/2019/5437621 |
[22] |
Lasda E, Parker R. Circular RNAs: diversity of form and function[J]. RNA, 2014, 20(12):1829-1842. doi: 10.1261/rna.047126.114.
doi: 10.1261/rna.047126.114 pmid: 25404635 |
[23] |
Jia N, Li J. Role of Circular RNAs in Preeclampsia[J]. Dis Markers, 2019, 2019:7237495. doi: 10.1155/2019/7237495.
doi: 10.1155/2019/7237495 |
[24] |
Shafabakhsh R, Mirhosseini N, Chaichian S, et al. Could circRNA be a new biomarker for pre-eclampsia?[J]. Mol Reprod Dev, 2019, 86(12):1773-1780. doi: 10.1002/mrd.23262.
doi: 10.1002/mrd.23262 pmid: 31475762 |
[25] |
Wang Q, Zhu L, Jiang Y, et al. miR-219-5p suppresses the proliferation and invasion of colorectal cancer cells by targeting calcyphosin[J]. Oncol Lett, 2017, 13(3):1319-1324. doi: 10.3892/ol.2017.5570.
doi: 10.3892/ol.2017.5570 pmid: 28454255 |
[26] |
Wang M, Wang J, Deng J, et al. MiR-145 acts as a metastasis suppressor by targeting metadherin in lung cancer[J]. Med Oncol, 2015, 32(1):344. doi: 10.1007/s12032-014-0344-6.
doi: 10.1007/s12032-014-0344-6 pmid: 25428378 |
[27] |
Zhou G, Li Z, Hu P, et al. miR-219a suppresses human trophoblast cell invasion and proliferation by targeting vascular endothelial growth factor receptor 2 (VEGFR2)[J]. J Assist Reprod Genet, 2021, 38(2):461-470. doi: 10.1007/s10815-020-02022-y.
doi: 10.1007/s10815-020-02022-y |
[28] |
Han L, Zhao Y, Luo QQ, et al. The significance of miR-145 in the prediction of preeclampsia[J]. Bratisl Lek Listy, 2017, 118(9):523-528. doi: 10.4149/BLL_2017_101.
doi: 10.4149/BLL_2017_101 |
[29] |
Han L, Luo QQ, Peng MG, et al. miR-483 is downregulated in pre-eclampsia via targeting insulin-like growth factor 1 (IGF1) and regulates the PI3K/Akt/mTOR pathway of endothelial progenitor cells[J]. J Obstet Gynaecol Res, 2021, 47(1):63-72. doi: 10.1111/jog.14412.
doi: 10.1111/jog.14412 |
[30] |
Yang J, Qi M, Fei X, et al. LncRNA H19: A novel oncogene in multiple cancers[J]. Int J Biol Sci, 2021, 17(12):3188-3208. doi: 10.7150/ijbs.62573.
doi: 10.7150/ijbs.62573 pmid: 34421359 |
[31] |
Xu J, Xia Y, Zhang H, et al. Overexpression of long non-coding RNA H19 promotes invasion and autophagy via the PI3K/AKT/mTOR pathways in trophoblast cells[J]. Biomed Pharmacother, 2018, 101:691-697. doi: 10.1016/j.biopha.2018.02.134.
doi: S0753-3322(17)35633-0 pmid: 29522949 |
[32] |
Gao WL, Liu M, Yang Y, et al. The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1)[J]. RNA Biol, 2012, 9(7):1002-1010. doi: 10.4161/rna.20807.
doi: 10.4161/rna.20807 |
[33] |
Song X, Luo X, Gao Q, et al. Dysregulation of LncRNAs in Placenta and Pathogenesis of Preeclampsia[J]. Curr Drug Targets, 2017, 18(10):1165-1170. doi: 10.2174/1389450118666170404160000.
doi: 10.2174/1389450118666170404160000 pmid: 28382860 |
[34] | Chen H, Meng T, Liu X, et al. Long non-coding RNA MALAT-1 is downregulated in preeclampsia and regulates proliferation, apoptosis, migration and invasion of JEG-3 trophoblast cells[J]. Int J Clin Exp Pathol, 2015, 8(10):12718-12727. |
[35] |
Wu HY, Wang XH, Liu K, et al. LncRNA MALAT1 regulates trophoblast cells migration and invasion via miR-206/IGF-1 axis[J]. Cell Cycle, 2020, 19(1):39-52. doi: 10.1080/15384101.2019.1691787.
doi: 10.1080/15384101.2019.1691787 |
[36] |
Goyal B, Yadav S, Awasthee N, et al. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2): 188502. doi: 10.1016/j.bbcan.2021.188502.
doi: 10.1016/j.bbcan.2021.188502 |
[37] |
Wang Q, Lu X, Li C, et al. Down-regulated long non-coding RNA PVT1 contributes to gestational diabetes mellitus and preeclampsia via regulation of human trophoblast cells[J]. Biomed Pharmacother, 2019, 120:109501. doi: 10.1016/j.biopha.2019.109501.
doi: 10.1016/j.biopha.2019.109501 |
[38] |
Wei X, Yuan Y, Yang Q. SNHG22 promotes migration and invasion of trophoblasts via miR-128-3p/PCDH11X axis and activates PI3K/Akt signaling pathway[J]. Clinics (Sao Paulo), 2022, 77:100055. doi: 10.1016/j.clinsp.2022.100055.
doi: 10.1016/j.clinsp.2022.100055 |
[39] |
Zhang Q, Wang Z, Cheng X, et al. lncRNA DANCR promotes the migration an invasion and of trophoblast cells through microRNA-214-5p in preeclampsia[J]. Bioengineered, 2021, 12(2):9424-9434. doi: 10.1080/21655979.2021.1988373.
doi: 10.1080/21655979.2021.1988373 pmid: 34652251 |
[40] |
Zheng D, Hou Y, Li Y, et al. Long Non-coding RNA Gas5 Is Associated With Preeclampsia and Regulates Biological Behaviors of Trophoblast via MicroRNA-21[J]. Front Genet, 2020, 11:188. doi: 10.3389/fgene.2020.00188.
doi: 10.3389/fgene.2020.00188 pmid: 32194641 |
[41] |
Tang R, Zhang Z, Han W. CircLRRK1 targets miR-223-3p to inhibit the proliferation, migration and invasion of trophoblast cells by regulating the PI3K/AKT signaling pathway[J]. Placenta, 2021, 104:110-118. doi: 10.1016/j.placenta.2020.12.003.
doi: 10.1016/j.placenta.2020.12.003 pmid: 33310596 |
[42] |
Li Z, Zhou X, Gao W, et al. Circular RNA VRK1 facilitates pre-eclampsia progression via sponging miR-221-3P to regulate PTEN/Akt[J]. J Cell Mol Med, 2022, 26(6):1826-1841. doi: 10.1111/jcmm.16454.
doi: 10.1111/jcmm.16454 |
[43] |
Li C, Li Q. Circular RNA circ_0111277 Serves as ceRNA, Targeting the miR-424-5p/NFAT5 Axis to Regulate the Proliferation, Migration, and Invasion of Trophoblast Cells in Preeclampsia[J]. Reprod Sci, 2022, 29(3):923-935. doi: 10.1007/s43032-021-00715-y.
doi: 10.1007/s43032-021-00715-y |
[1] | 马玲, 李亚西, 赵敏, 王静, 李红丽. 细胞凋亡与不良妊娠结局关系的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 121-126. |
[2] | 侯春艳, 杜秀萍, 王红红, 侯岳洋. 高迁移率族蛋白A2在胎儿生长受限发病机制中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 127-131. |
[3] | 杨洋, 马媛, 陈宥艺, 赵静, 马文娟. 重度子痫前期患者血清外泌体对人正常蜕膜免疫细胞功能的影响[J]. 国际妇产科学杂志, 2025, 52(2): 143-152. |
[4] | 王晶, 王永红. 蜕膜自然杀伤细胞在子痫前期发病机制中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 88-93. |
[5] | 张雯, 刘慧强. SOCS1与外泌体微小RNA在子痫前期发病机制中的作用[J]. 国际妇产科学杂志, 2025, 52(1): 94-98. |
[6] | 王一丹, 王永红. 转化生长因子-β超家族在子痫前期发病机制中的作用[J]. 国际妇产科学杂志, 2025, 52(1): 99-104. |
[7] | 樊博扬, 胡丽燕. 双胎妊娠合并子痫前期发病机制及预测方法研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 611-615. |
[8] | 高艺苇, 罗伟, 吴琼, 穆玉兰. 铁死亡与早发性卵巢功能不全的关系[J]. 国际妇产科学杂志, 2024, 51(5): 497-502. |
[9] | 邓玲玲, 伍绍文, 张为远. 小剂量阿司匹林在子痫前期预防中的研究进展[J]. 国际妇产科学杂志, 2024, 51(5): 515-518. |
[10] | 张琦, 王新, 任毅, 刘超, 高慧婕. SLRPs在胎盘发育及妊娠相关疾病中的研究进展[J]. 国际妇产科学杂志, 2024, 51(5): 525-530. |
[11] | 郭希, 魏佳, 杨永秀. 导致子宫内膜疾病的激素通路及调节因素[J]. 国际妇产科学杂志, 2024, 51(4): 395-400. |
[12] | 任毅, 胡玉莲, 王新, 张琦, 刘超, 高慧婕. 子痫前期的中药临床应用与现代药理学进展[J]. 国际妇产科学杂志, 2024, 51(4): 442-447. |
[13] | 赵丽霞, 王小青. 硫酸镁在子痫前期治疗中的争议及其不良反应[J]. 国际妇产科学杂志, 2024, 51(4): 448-452. |
[14] | 吴志韦, 林雪燕, 张雪芹, 杨梅琳. 子痫前期预防、预测的现状与关注焦点[J]. 国际妇产科学杂志, 2024, 51(3): 312-316. |
[15] | 张春双, 董晓真, 周昌荣, 王懿珊, 栗河舟. 宫内治疗胎儿胸腔积液合并水肿并发镜像综合征一例[J]. 国际妇产科学杂志, 2024, 51(3): 357-360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||