国际妇产科学杂志 ›› 2023, Vol. 50 ›› Issue (1): 11-15.doi: 10.12280/gjfckx.20220736
收稿日期:
2022-09-13
出版日期:
2023-02-15
发布日期:
2023-03-02
通讯作者:
汪希鹏,E-mail:Received:
2022-09-13
Published:
2023-02-15
Online:
2023-03-02
Contact:
WANG Xi-peng, E-mail: 摘要:
子宫内膜癌是女性生殖系统三大恶性肿瘤之一,严重危害女性健康。近年研究发现,铁死亡在子宫内膜癌的发生、发展中起到重要作用。作为一种细胞程序性死亡方式,铁死亡与铁代谢、脂质代谢和氧化应激等生物过程密切相关。研究发现通过调控子宫内膜癌细胞铁代谢及氧化应激,可以促进癌细胞铁死亡,抑制肿瘤细胞增殖,且调控铁死亡的相关通路可以影响子宫内膜癌患者化疗敏感性,分析铁死亡相关基因表达可以预测子宫内膜癌患者预后。因此,铁死亡通路相关蛋白有望成为子宫内膜癌治疗新靶点。综述铁死亡的发生机制及其在子宫内膜癌的发生、治疗中的作用,并分析铁死亡相关分子作为一种新型的分子分型预测子宫内膜癌预后的潜在应用价值,为铁死亡在子宫内膜癌治疗领域中的应用提供新思路。
魏云芳, 汪希鹏. 铁死亡相关机制与子宫内膜癌[J]. 国际妇产科学杂志, 2023, 50(1): 11-15.
WEI Yun-fang, WANG Xi-peng. Ferroptosis-Related Mechanisms in Endometrial Cancer[J]. Journal of International Obstetrics and Gynecology, 2023, 50(1): 11-15.
[1] |
中国抗癌协会妇科肿瘤专业委员会. 子宫内膜癌诊断与治疗指南(2021年版)[J]. 中国癌症杂志, 31(6):501-512. doi: 10.19401/j.cnki.1007-3639.2021.06.08.
doi: 10.19401/j.cnki.1007-3639.2021.06.08 |
[2] |
Lee YC, Lheureux S, Oza AM. Treatment strategies for endometrial cancer: current practice and perspective[J]. Curr Opin Obstet Gynecol, 2017, 29(1):47-58. doi: 10.1097/GCO.0000000000000338.
doi: 10.1097/GCO.0000000000000338 |
[3] |
Jeppesen MM, Jensen PT, Gilså Hansen D, et al. The nature of early-stage endometrial cancer recurrence-A national cohort study[J]. Eur J Cancer, 2016, 69:51-60. doi: 10.1016/j.ejca.2016.09.033.
doi: S0959-8049(16)32479-0 pmid: 27816832 |
[4] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072. doi: 10.1016/j.cell.2012.03.042.
doi: 10.1016/j.cell.2012.03.042 pmid: 22632970 |
[5] |
Dixon SJ. Ferroptosis: bug or feature?[J]. Immunol Rev, 2017, 277(1):150-157. doi: 10.1111/imr.12533.
doi: 10.1111/imr.12533 pmid: 28462529 |
[6] |
Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer[J]. Cancer Cell, 2019, 35(6):830-849. doi: 10.1016/j.ccell.2019.04.002.
doi: S1535-6108(19)30197-7 pmid: 31105042 |
[7] |
Ma S, Dielschneider RF, Henson ES, et al. Ferroptosis and autophagy induced cell death occur independently after siramesine and lapatinib treatment in breast cancer cells[J]. PLoS One, 2017, 12(8):e0182921. doi: 10.1371/journal.pone.0182921.
doi: 10.1371/journal.pone.0182921 |
[8] |
Gkouvatsos K, Papanikolaou G, Pantopoulos K. Regulation of iron transport and the role of transferrin[J]. Biochim Biophys Acta, 2012, 1820(3):188-202. doi: 10.1016/j.bbagen.2011.10.013.
doi: 10.1016/j.bbagen.2011.10.013 pmid: 22085723 |
[9] |
Zou Y, Henry WS, Ricq EL, et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion[J]. Nature, 2020, 585(7826):603-608. doi: 10.1038/s41586-020-2732-8.
doi: 10.1038/s41586-020-2732-8 |
[10] |
Yu Y, Sun X, Chen F, et al. Genetic Alteration, Prognostic and Immunological Role of Acyl-CoA Synthetase Long-Chain Family Member 4 in a Pan-Cancer Analysis[J]. Front Genet, 2022, 13:812674. doi: 10.3389/fgene.2022.812674.
doi: 10.3389/fgene.2022.812674 |
[11] |
Su Y, Zhao B, Zhou L, et al. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs[J]. Cancer Lett, 2020, 483:127-136. doi: 10.1016/j.canlet.2020.02.015.
doi: S0304-3835(20)30078-1 pmid: 32067993 |
[12] |
Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5):280-296. doi: 10.1038/s41571-020-00462-0.
doi: 10.1038/s41571-020-00462-0 pmid: 33514910 |
[13] |
Chen MS, Wang SF, Hsu CY, et al. CHAC1 degradation of glutathione enhances cystine-starvation-induced necroptosis and ferroptosis in human triple negative breast cancer cells via the GCN2-eIF2α-ATF4 pathway[J]. Oncotarget, 2017, 8(70):114588-114602. doi: 10.18632/oncotarget.23055.
doi: 10.18632/oncotarget.23055 |
[14] |
Ng SW, Norwitz SG, Taylor HS, et al. Endometriosis: The Role of Iron Overload and Ferroptosis[J]. Reprod Sci, 2020, 27(7):1383-1390. doi: 10.1007/s43032-020-00164-z.
doi: 10.1007/s43032-020-00164-z |
[15] |
Kallianpur AR, Lee SA, Xu WH, et al. Dietary iron intake and risk of endometrial cancer: a population-based case-control study in Shanghai, China[J]. Nutr Cancer, 2010, 62(1):40-50. doi: 10.1080/01635580903191544.
doi: 10.1080/01635580903191544 pmid: 20043258 |
[16] |
Kabat GC, Miller AB, Jain M, et al. Dietary iron and haem iron intake and risk of endometrial cancer: a prospective cohort study[J]. Br J Cancer, 2008, 98(1):194-198. doi: 10.1038/sj.bjc.6604110.
doi: 10.1038/sj.bjc.6604110 |
[17] |
Sendo K, Seino M, Ohta T, et al. Impact of the glutathione synthesis pathway on sulfasalazine-treated endometrial cancer[J]. Oncotarget, 2022, 13:224-236. doi: 10.18632/oncotarget.28185.
doi: 10.18632/oncotarget.28185 pmid: 35106124 |
[18] |
Zhang M, Zhang T, Song C, et al. Guizhi Fuling Capsule ameliorates endometrial hyperplasia through promoting p62-Keap1-NRF2-mediated ferroptosis[J]. J Ethnopharmacol, 2021, 274:114064. doi: 10.1016/j.jep.2021.114064.
doi: 10.1016/j.jep.2021.114064 |
[19] |
Song X, Long D. Nrf2 and Ferroptosis: A New Research Direction for Neurodegenerative Diseases[J]. Front Neurosci, 2020, 14:267. doi: 10.3389/fnins.2020.00267.
doi: 10.3389/fnins.2020.00267 |
[20] | Chen N, Yi X, Abushahin N, et al. Nrf2 expression in endometrial serous carcinomas and its precancers[J]. Int J Clin Exp Pathol, 2010, 4(1):85-96. |
[21] |
López-Janeiro Á, Ruz-Caracuel I, Ramón-Patino JL, et al. Proteomic Analysis of Low-Grade, Early-Stage Endometrial Carcinoma Reveals New Dysregulated Pathways Associated with Cell Death and Cell Signaling[J]. Cancers (Basel), 2021, 13(4):794. doi: 10.3390/cancers13040794.
doi: 10.3390/cancers13040794 |
[22] |
León-Castillo A, de Boer SM, Powell ME, et al. Molecular Classification of the PORTEC-3 Trial for High-Risk Endometrial Cancer: Impact on Prognosis and Benefit From Adjuvant Therapy[J]. J Clin Oncol, 2020, 38(29):3388-3397. doi: 10.1200/JCO.20.00549.
doi: 10.1200/JCO.20.00549 |
[23] |
Liu Y, Zhao R, Chi S, et al. UBE2C Is Upregulated by Estrogen and Promotes Epithelial-Mesenchymal Transition via p53 in Endometrial Cancer[J]. Mol Cancer Res, 2020, 18(2):204-215. doi: 10.1158/1541-7786.MCR-19-0561.
doi: 10.1158/1541-7786.MCR-19-0561 pmid: 31662448 |
[24] |
Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network[J]. Free Radic Biol Med, 2019, 133:162-168. doi: 10.1016/j.freeradbiomed.2018.05.074.
doi: 10.1016/j.freeradbiomed.2018.05.074 |
[25] |
Xie Y, Zhu S, Song X, et al. The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity[J]. Cell Rep, 2017, 20(7):1692-1704. doi: 10.1016/j.celrep.2017.07.055.
doi: S2211-1247(17)31034-3 pmid: 28813679 |
[26] |
Yang X, Zhang X, Wu R, et al. DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis[J]. Oncotarget, 2017, 8(5):8679-8692. doi: 10.18632/oncotarget.14412.
doi: 10.18632/oncotarget.14412 pmid: 28060721 |
[27] |
He J, Ding H, Li H, et al. Intra-Tumoral Expression of SLC7A11 Is Associated with Immune Microenvironment, Drug Resistance, and Prognosis in Cancers: A Pan-Cancer Analysis[J]. Front Genet, 2021, 12:770857. doi: 10.3389/fgene.2021.770857.
doi: 10.3389/fgene.2021.770857 |
[28] |
Wang H, Wu Y, Chen S, et al. Construction and Validation of a Ferroptosis-Related Prognostic Model for Endometrial Cancer[J]. Front Genet, 2021, 12:729046. doi: 10.3389/fgene.2021.729046.
doi: 10.3389/fgene.2021.729046 |
[29] |
Liu J, Wang Y, Meng H, et al. Identification of the Prognostic Signature Associated With Tumor Immune Microenvironment of Uterine Corpus Endometrial Carcinoma Based on Ferroptosis-Related Genes[J]. Front Cell Dev Biol, 2021, 9:735013. doi: 10.3389/fcell.2021.735013.
doi: 10.3389/fcell.2021.735013 |
[30] |
Wang Y, Wang Y, Zhang Z, et al. Mechanism of progestin resistance in endometrial precancer/cancer through Nrf2-AKR1C1 pathway[J]. Oncotarget, 2016, 7(9):10363-10372. doi: 10.18632/oncotarget.7004.
doi: 10.18632/oncotarget.7004 pmid: 26824415 |
[31] |
Bai M, Yang L, Liao H, et al. Metformin sensitizes endometrial cancer cells to chemotherapy through IDH1-induced Nrf2 expression via an epigenetic mechanism[J]. Oncogene, 2018, 37(4):5666-5681. doi: 10.1038/s41388-018-0360-7.
doi: 10.1038/s41388-018-0360-7 |
[32] |
Zhang YY, Ni ZJ, Elam E, et al. Juglone, a novel activator of ferroptosis, induces cell death in endometrial carcinoma Ishikawa cells[J]. Food Funct, 2021, 12(11):4947-4959. doi: 10.1039/d1fo00790d.
doi: 10.1039/d1fo00790d |
[33] |
Qin J, Shao X, Wu L, et al. Identification of the Ferroptosis-Associated Gene Signature to Predict the Prognostic Status of Endometrial Carcinoma Patients[J]. Comput Math Methods Med, 2021, 2021:9954370. doi: 10.1155/2021/9954370.
doi: 10.1155/2021/9954370 |
[34] |
Cancer Genome Atlas Research Network, Kandoth C, Schultz N, et al. Integrated genomic characterization of endometrial carcinoma[J]. Nature, 2013, 497(7447):67-73. doi: 10.1038/nature12113.
doi: 10.1038/nature12113 |
[35] |
Eriksson LSE, Nastic D, Lindqvist PG, et al. Combination of Proactive Molecular Risk Classifier for Endometrial cancer(ProMisE) with sonographic and demographic characteristics in preoperative prediction of recurrence or progression of endometrial cancer[J]. Ultrasound Obstet Gynecol, 2021, 58(3):457-468. doi: 10.1002/uog.23573.
doi: 10.1002/uog.23573 pmid: 33314410 |
[36] |
Weijiao Y, Fuchun L, Mengjie C, et al. Immune infiltration and a ferroptosis-associated gene signature for predicting the prognosis of patients with endometrial cancer[J]. Aging (Albany NY), 2021, 13(12):16713-16732. doi: 10.18632/aging.203190.
doi: 10.18632/aging.203190 |
[1] | 陈晓娟, 张艳馨. 妊娠合并血友病A患者足月分娩一例[J]. 国际妇产科学杂志, 2025, 52(2): 158-160. |
[2] | 张昊晟, 魏芳. Nectin-4在妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 165-168. |
[3] | 林环宇, 邵小光, 路旭宏, 王秋月, 魏巍, 佟春艳. Web of Science核心数据库2004—2024年女性恶性肿瘤患者生育力保存的研究现状及热点[J]. 国际妇产科学杂志, 2025, 52(2): 180-186. |
[4] | 江爱美, 张信美. 腹壁子宫内膜异位症的治疗进展[J]. 国际妇产科学杂志, 2025, 52(2): 211-216. |
[5] | 徐淑颖, 徐海鹏, 王丽娜, 张阳. 锌与多囊卵巢综合征的关系[J]. 国际妇产科学杂志, 2025, 52(2): 217-221. |
[6] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
[7] | 侯春艳, 杜秀萍. 妊娠中晚期自发性子宫破裂二例[J]. 国际妇产科学杂志, 2025, 52(1): 110-113. |
[8] | 钟佩蕖, 招丽坚, 邹欣欣. 残角子宫妊娠行期待治疗至妊娠晚期一例[J]. 国际妇产科学杂志, 2025, 52(1): 114-116. |
[9] | 潘琪, 冯同富, 金晶, 吴莺, 杜欣. 腹腔镜切除成人腹膜后巨大成熟性畸胎瘤一例[J]. 国际妇产科学杂志, 2025, 52(1): 28-31. |
[10] | 贾炎峰, 吴珍珍, 王维红, 王玥元, 李娟. 原发性卵巢腺鳞癌一例[J]. 国际妇产科学杂志, 2025, 52(1): 32-36. |
[11] | 宋丽芳, 吴珍珍, 毛宝宏, 赵小丽, 刘青. 卵巢癌腹股沟淋巴结孤立转移一例[J]. 国际妇产科学杂志, 2025, 52(1): 37-41. |
[12] | 齐丹丹, 朱海英, 曹海汝, 张跃敏. 线粒体功能障碍调控卵巢衰老的机制[J]. 国际妇产科学杂志, 2025, 52(1): 61-65. |
[13] | 石百超, 王宇, 常惠, 卢凤娟, 关木馨, 余健楠, 吴效科. 中药及天然产物改善子宫内膜异位症的作用机制[J]. 国际妇产科学杂志, 2025, 52(1): 66-71. |
[14] | 李恒兵, 袁海宁, 张云洁, 张江琳, 郭子珍, 孙振高. 外泌体通过调控免疫微环境治疗慢性子宫内膜炎的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 72-78. |
[15] | 张野, 陈巧云, 赵佳怡, 陈璐, 刘建荣. 纳米微球在宫颈癌预防与治疗中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 8-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||