国际妇产科学杂志 ›› 2023, Vol. 50 ›› Issue (5): 497-501.doi: 10.12280/gjfckx.20230425
收稿日期:
2023-06-07
出版日期:
2023-10-15
发布日期:
2023-10-16
通讯作者:
马红霞,E-mail:基金资助:
JI En-ting, XU Ya-xuan, ZHANG Chun-ren, HU Min, MA Hong-xia()
Received:
2023-06-07
Published:
2023-10-15
Online:
2023-10-16
Contact:
MA Hong-xia, E-mail: 摘要:
胎盘作为维持正常妊娠的基础,是母胎交流的重要媒介。胎盘组织处于纤维化、缺氧、慢性炎症和血液供应不足等状态可导致流产、子痫前期、妊娠期糖尿病和早产等妊娠并发症的发生,严重影响女性健康及胎儿结局。线粒体作为能量代谢的枢纽,其动力学、生物合成、氧化磷酸化等过程异常会引起胎盘组织炎症因子水平增加,氧化和抗氧化失衡,造成胎盘功能损伤,从而促进各种妊娠并发症的发生发展。综述目前关于胎盘线粒体功能障碍对多种妊娠并发症的影响,探讨其中的潜在机制。
计恩婷, 许雅绚, 张春仁, 胡敏, 马红霞. 胎盘线粒体功能在妊娠并发症发生机制中作用的研究[J]. 国际妇产科学杂志, 2023, 50(5): 497-501.
JI En-ting, XU Ya-xuan, ZHANG Chun-ren, HU Min, MA Hong-xia. Study on the Role of Placental Mitochondrial Function in the Pathogenesis of Pregnancy Complications[J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 497-501.
[1] |
Lu M, Sferruzzi-Perri AN. Placental mitochondrial function in response to gestational exposures[J]. Placenta, 2021, 104:124-137. doi: 10.1016/j.placenta.2020.11.012.
pmid: 33338764 |
[2] | Reijnders IF, Mulders A, Koster M. Placental development and function in women with a history of placenta-related complications: a systematic review[J]. Acta Obstet Gynecol Scand, 2018, 97(3):248-257. doi: 10.1111/aogs.13259. |
[3] | Zhang X, He X, Wei L, et al. NRF2 protects against ROS-induced preterm premature rupture of membranes through regulation of mitochondria[J]. Biol Reprod,2023 Jul 10;ioad075. doi: 10.1093/biolre/ioad075. |
[4] | Sferruzzi-Perri AN, Lopez-Tello J, Salazar-Petres E. Placental adaptations supporting fetal growth during normal and adverse gestational environments[J]. Exp Physiol, 2023, 108(3):371-397. doi: 10.1113/EP090442. |
[5] | Jahan F, Vasam G, Green AE, et al. Placental Mitochondrial Function and Dysfunction in Preeclampsia[J]. Int J Mol Sci, 2023, 24(4):4177. doi: 10.3390/ijms24044177. |
[6] | Fisher JJ, Bartho LA, Perkins AV, et al. Placental mitochondria and reactive oxygen species in the physiology and pathophysiology of pregnancy[J]. Clin Exp Pharmacol Physiol, 2020, 47(1):176-184. doi: 10.1111/1440-1681.13172. |
[7] |
Seok J, Jun S, Cho J, et al. Human placenta-derived mesenchymal stem cells induce trophoblast invasion via dynamic effects on mitochondrial function[J]. J Cell Physiol, 2021, 236(9):6678-6690. doi: 10.1002/jcp.30330.
pmid: 33624308 |
[8] |
Lyu SW, Song H, Yoon JA, et al. Transcriptional profiling with a pathway-oriented analysis in the placental villi of unexplained miscarriage[J]. Placenta, 2013, 34(2):133-140. doi: 10.1016/j.placenta.2012.12.003.
pmid: 23266290 |
[9] | Li Y, Zhang CL, Zhang SD. Infertility treatment for Chinese women with P450 oxidoreductase deficiency: Prospect on clinical management from IVF to FET[J]. Front Endocrinol(Lausanne), 2022, 13:1019696. doi: 10.3389/fendo.2022.1019696. |
[10] | Hu M, Zhang Y, Ma S, et al. Suppression of uterine and placental ferroptosis by N-acetylcysteine in a rat model of polycystic ovary syndrome[J]. Mol Hum Reprod, 2021, 27(12):gaab067. doi: 10.1093/molehr/gaab067. |
[11] |
Cai H, Chen L, Zhang M, et al. Low expression of MFN2 is associated with early unexplained miscarriage by regulating autophagy of trophoblast cells[J]. Placenta, 2018, 70:34-40. doi: 10.1016/j.placenta.2018.08.005.
pmid: 30316324 |
[12] |
Wang W, Wang R, Zhang Q, et al. Benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide induces human trophoblast Swan 71 cell dysfunctions due to cell apoptosis through disorder of mitochondrial fission/fusion[J]. Environ Pollut, 2018, 233:820-832. doi: 10.1016/j.envpol.2017.11.022.
pmid: 29144987 |
[13] |
Chen H, Detmer SA, Ewald AJ, et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development[J]. J Cell Biol, 2003, 160(2):189-200. doi: 10.1083/jcb.200211046.
pmid: 12527753 |
[14] |
Fatima N, Ahmed SH, Chauhan SS, et al. Structural equation modelling analysis determining causal role among methyltransferases, methylation, and apoptosis during human pregnancy and abortion[J]. Sci Rep, 2020, 10(1):12408. doi: 10.1038/s41598-020-68270-1.
pmid: 32709893 |
[15] | Michita RT, Zambra F, Fraga LR, et al. The role of FAS, FAS-L, BAX, and BCL-2 gene polymorphisms in determining susceptibility to unexplained recurrent pregnancy loss[J]. J Assist Reprod Genet, 2019, 36(5):995-1002. doi: 10.1007/s10815-019-01441-w. |
[16] |
Pang W, Zhang Y, Zhao N, et al. Low expression of Mfn2 is associated with mitochondrial damage and apoptosis in the placental villi of early unexplained miscarriage[J]. Placenta, 2013, 34(7):613-618. doi: 10.1016/j.placenta.2013.03.013.
pmid: 23601695 |
[17] | Long J, Huang Y, Wang G, et al. Mitochondrial ROS Accumulation Contributes to Maternal Hypertension and Impaired Remodeling of Spiral Artery but Not IUGR in a Rat PE Model Caused by Maternal Glucocorticoid Exposure[J]. Antioxidants(Basel), 2023, 12(5):987. doi: 10.3390/antiox12050987. |
[18] |
Gillmore T, Farrell A, Alahari S, et al. Dichotomy in hypoxia-induced mitochondrial fission in placental mesenchymal cells during development and preeclampsia: consequences for trophoblast mitochondrial homeostasis[J]. Cell Death Dis, 2022, 13(2):191. doi: 10.1038/s41419-022-04641-y.
pmid: 35220394 |
[19] |
Zhou X, Zhao X, Zhou W, et al. Impaired placental mitophagy and oxidative stress are associated with dysregulated BNIP3 in preeclampsia[J]. Sci Rep, 2021, 11(1):20469. doi: 10.1038/s41598-021-99837-1.
pmid: 34650122 |
[20] |
Zhou X, Han TL, Chen H, et al. Impaired mitochondrial fusion, autophagy, biogenesis and dysregulated lipid metabolism is associated with preeclampsia[J]. Exp Cell Res, 2017, 359(1):195-204. doi: 10.1016/j.yexcr.2017.07.029.
pmid: 28751269 |
[21] |
Ricci CA, Reid DM, Sun J, et al. Maternal and fetal mitochondrial gene dysregulation in hypertensive disorders of pregnancy[J]. Physiol Genomics, 2023, 55(7):275-285. doi: 10.1152/physiolgenomics.00005.2023.
pmid: 37184228 |
[22] |
Holland OJ, Cuffe J, Dekker Nitert M, et al. Placental mitochondrial adaptations in preeclampsia associated with progression to term delivery[J]. Cell Death Dis, 2018, 9(12):1150. doi: 10.1038/s41419-018-1190-9.
pmid: 30455461 |
[23] |
Vangrieken P, Al-Nasiry S, Bast A, et al. Placental Mitochondrial Abnormalities in Preeclampsia[J]. Reprod Sci, 2021, 28(8):2186-2199. doi: 10.1007/s43032-021-00464-y.
pmid: 33523425 |
[24] | Mishra JS, Blesson CS, Kumar S. Testosterone Decreases Placental Mitochondrial Content and Cellular Bioenergetics[J]. Biology(Basel), 2020, 9(7):176. doi: 10.3390/biology9070176. |
[25] | Myatt L, Muralimanoharan S, Maloyan A. Effect of preeclampsia on placental function: influence of sexual dimorphism, microRNA′s and mitochondria[J]. Adv Exp Med Biol, 2014, 814:133-146. doi: 10.1007/978-1-4939-1031-1_12. |
[26] |
Williamson RD, McCarthy FP, Khashan AS, et al. Exploring the role of mitochondrial dysfunction in the pathophysiology of pre-eclampsia[J]. Pregnancy Hypertens, 2018, 13:248-253. doi: 10.1016/j.preghy.2018.06.012.
pmid: 30177060 |
[27] | Goulopoulou S, Matsumoto T, Bomfim GF, et al. Toll-like receptor 9 activation: a novel mechanism linking placenta-derived mitochondrial DNA and vascular dysfunction in pre-eclampsia[J]. Clin Sci(Lond), 2012, 123(7):429-435. doi: 10.1042/CS20120130. |
[28] |
Williamson RD, McCarthy FP, Kenny LC, et al. Activation of a TLR9 mediated innate immune response in preeclampsia[J]. Sci Rep, 2019, 9(1):5920. doi: 10.1038/s41598-019-42551-w.
pmid: 30976066 |
[29] |
Sweeting A, Wong J, Murphy HR, et al. A Clinical Update on Gestational Diabetes Mellitus[J]. Endocr Rev, 2022, 43(5):763-793. doi: 10.1210/endrev/bnac003.
pmid: 35041752 |
[30] | Gao C, Sun X, Lu L, et al. Prevalence of gestational diabetes mellitus in mainland China: A systematic review and meta-analysis[J]. J Diabetes Investig, 2019, 10(1):154-162. doi: 10.1111/jdi.12854. |
[31] | Joo EH, Kim YR, Kim N, et al. Effect of Endogenic and Exogenic Oxidative Stress Triggers on Adverse Pregnancy Outcomes: Preeclampsia, Fetal Growth Restriction, Gestational Diabetes Mellitus and Preterm Birth[J]. Int J Mol Sci, 2021, 22(18):10122. doi: 10.3390/ijms221810122. |
[32] |
Berezhnov AV, Soutar MP, Fedotova EI, et al. Intracellular pH Modulates Autophagy and Mitophagy[J]. J Biol Chem, 2016, 291(16):8701-8708. doi: 10.1074/jbc.M115.691774.
pmid: 26893374 |
[33] | Ramírez MA, Morales J, Cornejo M, et al. Intracellular acidification reduces l-arginine transport via system y+L but not via system y+/CATs and nitric oxide synthase activity in human umbilical vein endothelial cells[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt A):1192-1202. doi: 10.1016/j.bbadis.2018.01.032. |
[34] | Wang JJ, Wang X, Li Q, et al. Feto-placental endothelial dysfunction in Gestational Diabetes Mellitus under dietary or insulin therapy[J]. BMC Endocr Disord, 2023, 23(1):48. doi: 10.1186/s12902-023-01305-6. |
[35] |
Sultan SA, Liu W, Peng Y, et al. The Role of Maternal Gestational Diabetes in Inducing Fetal Endothelial Dysfunction[J]. J Cell Physiol, 2015, 230(11):2695-2705. doi: 10.1002/jcp.24993.
pmid: 25808705 |
[36] | Fisher JJ, Vanderpeet CL, Bartho LA, et al. Mitochondrial dysfunction in placental trophoblast cells experiencing gestational diabetes mellitus[J]. J Physiol, 2021, 599(4):1291-1305. doi: 10.1113/JP280593. |
[37] | Valent AM, Choi H, Kolahi KS, et al. Hyperglycemia and gestational diabetes suppress placental glycolysis and mitochondrial function and alter lipid processing[J]. FASEB J, 2021, 35(3):e21423. doi: 10.1096/fj.202000326RR. |
[38] | Boyle KE, Hwang H, Janssen RC, et al. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle[J]. PLoS One, 2014, 9(9):e106872. doi: 10.1371/journal.pone.0106872. |
[39] | Phillips EA, Hendricks N, Bucher M, et al. Vitamin D Supplementation Improves Mitochondrial Function and Reduces Inflammation in Placentae of Obese Women[J]. Front Endocrinol(Lausanne), 2022, 13:893848. doi: 10.3389/fendo.2022.893848. |
[40] | Reiter RJ, Ma Q, Sharma R. Melatonin in Mitochondria: Mitigating Clear and Present Dangers[J]. Physiology (Bethesda), 2020, 35(2):86-95. doi: 10.1152/physiol.00034.2019. |
[41] | Morimoto Y, Gamage U, Yamochi T, et al. Mitochondrial Transfer into Human Oocytes Improved Embryo Quality and Clinical Outcomes in Recurrent Pregnancy Failure Cases[J]. Int J Mol Sci, 2023, 24(3):2738. doi: 10.3390/ijms24032738. |
[42] | Xu X, Ye X, Zhu M, et al. FtMt reduces oxidative stress-induced trophoblast cell dysfunction via the HIF-1α/VEGF signaling pathway[J]. BMC Pregnancy Childbirth, 2023, 23(1):131. doi: 10.1186/s12884-023-05448-1. |
[1] | 马玲, 李亚西, 赵敏, 王静, 李红丽. 细胞凋亡与不良妊娠结局关系的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 121-126. |
[2] | 杨洋, 马媛, 陈宥艺, 赵静, 马文娟. 重度子痫前期患者血清外泌体对人正常蜕膜免疫细胞功能的影响[J]. 国际妇产科学杂志, 2025, 52(2): 143-152. |
[3] | 张永清, 陈正云, 陈路萍, 颜国辉, 陈丹青. 剖宫产术中诊断足月宫角妊娠二例[J]. 国际妇产科学杂志, 2025, 52(2): 153-157. |
[4] | 陈晓娟, 张艳馨. 妊娠合并血友病A患者足月分娩一例[J]. 国际妇产科学杂志, 2025, 52(2): 158-160. |
[5] | 耿昊, 陈叙. 早产的产程特点及产时管理[J]. 国际妇产科学杂志, 2025, 52(1): 105-109. |
[6] | 侯春艳, 杜秀萍. 妊娠中晚期自发性子宫破裂二例[J]. 国际妇产科学杂志, 2025, 52(1): 110-113. |
[7] | 钟佩蕖, 招丽坚, 邹欣欣. 残角子宫妊娠行期待治疗至妊娠晚期一例[J]. 国际妇产科学杂志, 2025, 52(1): 114-116. |
[8] | 齐丹丹, 朱海英, 曹海汝, 张跃敏. 线粒体功能障碍调控卵巢衰老的机制[J]. 国际妇产科学杂志, 2025, 52(1): 61-65. |
[9] | 王晶, 王永红. 蜕膜自然杀伤细胞在子痫前期发病机制中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 88-93. |
[10] | 张雯, 刘慧强. SOCS1与外泌体微小RNA在子痫前期发病机制中的作用[J]. 国际妇产科学杂志, 2025, 52(1): 94-98. |
[11] | 王一丹, 王永红. 转化生长因子-β超家族在子痫前期发病机制中的作用[J]. 国际妇产科学杂志, 2025, 52(1): 99-104. |
[12] | 樊博扬, 胡丽燕. 双胎妊娠合并子痫前期发病机制及预测方法研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 611-615. |
[13] | 林环宇, 于敏, 路旭宏. 产后盆底功能障碍性疾病高危因素的研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 620-623. |
[14] | 马国霞, 王佳丽, 苗贺瑱, 闫宇, 刘佳佳, 杨永秀. 妊娠合并Ebstein畸形二例[J]. 国际妇产科学杂志, 2024, 51(6): 624-628. |
[15] | 陈慧赟, 韩冰, 陈洁, 张洁, 章鹤, 张英辉. 妊娠合并神经精神性系统性红斑狼疮一例[J]. 国际妇产科学杂志, 2024, 51(6): 629-631. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||