[1] |
Yang SL, Si LH, Lin RX, et al. Prognostic role of the peritoneal cancer index in ovarian cancer patients who undergo cytoreductive surgery: a meta-analysis[J]. Curr Probl Cancer, 2023, 47(6):101014. doi: 10.1016/j.currproblcancer.2023.101014.
|
[2] |
Matsuo K, Chen L, Robison K, et al. Trends in the use of indocyanine green for sentinel lymph node mapping in vulvar cancer[J]. Am J Obstet Gynecol, 2023, 229(4):466-468. doi: 10.1016/j.ajog.2023.07.019.
pmid: 37454962
|
[3] |
Nahshon C, Kadan Y, Lavie O, et al. Sentinel lymph node sampling versus full lymphadenectomy in endometrial cancer: a SEER database analysis[J]. Int J Gynecol Cancer, 2023, 33(10):1557-1563. doi: 10.1136/ijgc-2023-004474.
|
[4] |
Uccella S, Nero C, Vizza E, et al. Sentinel-node biopsy in early-stage ovarian cancer: preliminary results of a prospective multicentre study (SELLY)[J]. Am J Obstet Gynecol, 2019, 221(4):324.e1-e10. doi: 10.1016/j.ajog.2019.05.005.
|
[5] |
Agusti N, Viveros-Carreño D, Grillo-Ardila C, et al. Sentinel lymph node detection in early-stage ovarian cancer: a systematic review and meta-analysis[J]. Int J Gynecol Cancer, 2023, 33(10):1493-1501. doi: 10.1136/ijgc-2023-004572.
|
[6] |
Terada S, Tanaka T, Murakami H, et al. Lymphatic Complications Following Sentinel Node Biopsy or Pelvic Lymphadenectomy for Endometrial Cancer[J]. J Clin Med, 2023, 12(13):4540. doi: 10.3390/jcm12134540.
|
[7] |
Berasaluce Gómez A, Martín-Calvo N, Boria F, et al. SUCCOR Nodes: May Sentinel Node Biopsy Determine the Need for Adjuvant Treatment?[J]. Ann Surg Oncol, 2023, 30(8):4975-4985. doi: 10.1245/s10434-023-13529-w.
|
[8] |
Ramirez PT, Frumovitz M, Pareja R, et al. Minimally Invasive versus Abdominal Radical Hysterectomy for Cervical Cancer[J]. N Engl J Med, 2018, 379(20):1895-1904. doi: 10.1056/NEJMoa1806395.
|
[9] |
Klapdor R, Hertel H, Hillemanns P, et al. Peritoneal contamination with ICG-stained cervical secretion as surrogate for potential cervical cancer tumor cell dissemination: A proof-of-principle study for laparoscopic hysterectomy[J]. Acta Obstet Gynecol Scand, 2019, 98(11):1398-1403. doi: 10.1111/aogs.13681.
|
[10] |
Nguyen-Xuan HT, Montero Macias R, Bonsang-Kitzis H, et al. Use of fluorescence to guide surgical resection in vulvo-vaginal neoplasia: Two case reports[J]. J Gynecol Obstet Hum Reprod, 2021, 50(6):101768. doi: 10.1016/j.jogoh.2020.101768.
|
[11] |
Escobar PF, Ramirez PT, Garcia Ocasio RE, et al. Utility of indocyanine green (ICG) intra-operative angiography to determine uterine vascular perfusion at the time of radical trachelectomy[J]. Gynecol Oncol, 2016, 143(2):357-361. doi: 10.1016/j.ygyno.2016.08.239.
pmid: 27544455
|
[12] |
姚瑶, 龙颖, 卢艳, 等. ICG血管显像在保留子宫动脉输尿管分支宫颈癌根治术中的应用[J]. 肿瘤防治研究, 2019, 46(2):193-194. doi: 10.3971/j.issn.1000-8578.2019.18.0284.
|
[13] |
Höckel M, Hentschel B, Horn LC. Association between developmental steps in the organogenesis of the uterine cervix and locoregional progression of cervical cancer: a prospective clinicopathological analysis[J]. Lancet Oncol, 2014, 15(4):445-456. doi: 10.1016/S1470-2045(14)70060-9.
pmid: 24656439
|
[14] |
Kimmig R, Iannaccone A, Aktas B, et al. Embryologically based radical hysterectomy as peritoneal mesometrial resection (PMMR) with pelvic and para-aortic lymphadenectomy for loco-regional tumor control in endometrial cancer: first evidence for efficacy[J]. Arch Gynecol Obstet, 2016, 294(1):153-160. doi: 10.1007/s00404-015-3956-y.
pmid: 26596725
|
[15] |
Gentileschi S, Albanese R, Servillo M, et al. Pedicled neurocutaneous anterolateral thigh flap for groin reconstruction-A case report[J]. Microsurgery, 2019, 39(5):447-451. doi: 10.1002/micr.30454.
pmid: 30957283
|
[16] |
Kreklau A, Lopez Benitez R, Fornaro J, et al. Computer Tomography-Guided Percutaneous Indocyanine Green Injection for Intraoperative Mapping of Metastatic Suspected Lesions[J]. Front Med(Lausanne), 2018, 5:191. doi: 10.3389/fmed.2018.00191.
|
[17] |
Tummers QR, Hoogstins CE, Peters AA, et al. The Value of Intraoperative Near-Infrared Fluorescence Imaging Based on Enhanced Permeability and Retention of Indocyanine Green: Feasibility and False-Positives in Ovarian Cancer[J]. PLoS One, 2015, 10(6):e0129766. doi: 10.1371/journal.pone.0129766.
|
[18] |
van Dam GM, Themelis G, Crane LM, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results[J]. Nat Med, 2011, 17(10):1315-1319. doi: 10.1038/nm.2472.
pmid: 21926976
|
[19] |
Hoogstins CE, Tummers QR, Gaarenstroom KN, et al. A Novel Tumor-Specific Agent for Intraoperative Near-Infrared Fluorescence Imaging: A Translational Study in Healthy Volunteers and Patients with Ovarian Cancer[J]. Clin Cancer Res, 2016, 22(12):2929-2938. doi: 10.1158/1078-0432.CCR-15-2640.
pmid: 27306792
|
[20] |
Randall LM, Wenham RM, Low PS, et al. A phase Ⅱ, multicenter, open-label trial of OTL38 injection for the intra-operative imaging of folate receptor-alpha positive ovarian cancer[J]. Gynecol Oncol, 2019, 155(1):63-68. doi: 10.1016/j.ygyno.2019.07.010.
pmid: 31362825
|
[21] |
Tanyi JL, Randall LM, Chambers SK, et al. A Phase Ⅲ Study of Pafolacianine Injection (OTL38) for Intraoperative Imaging of Folate Receptor-Positive Ovarian Cancer (Study 006)[J]. J Clin Oncol, 2023, 41(2):276-284. doi: 10.1200/JCO.22.00291.
|
[22] |
Boogerd L, Hoogstins C, Gaarenstroom KN, et al. Folate receptor-α targeted near-infrared fluorescence imaging in high-risk endometrial cancer patients: a tissue microarray and clinical feasibility study[J]. Oncotarget, 2018, 9(1):791-801. doi: 10.18632/oncotarget.23155.
pmid: 29416655
|
[23] |
Voskuil FJ, Steinkamp PJ, Zhao T, et al. Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery[J]. Nat Commun, 2020, 11(1):3257. doi: 10.1038/s41467-020-16814-4.
pmid: 32591522
|
[24] |
García de Jalón E, Kleinmanns K, Fosse V, et al. Comparison of Five Near-Infrared Fluorescent Folate Conjugates in an Ovarian Cancer Model[J]. Mol Imaging Biol, 2023, 25(1):144-155. doi: 10.1007/s11307-021-01685-y.
|
[25] |
Kleinmanns K, Fosse V, Davidson B, et al. CD24-targeted intraoperative fluorescence image-guided surgery leads to improved cytoreduction of ovarian cancer in a preclinical orthotopic surgical model[J]. EBioMedicine, 2020, 56:102783. doi: 10.1016/j.ebiom.2020.102783.
|
[26] |
Fung K, Sharma SK, Keinänen O, et al. A Molecularly Targeted Intraoperative Near-Infrared Fluorescence Imaging Agent for High-Grade Serous Ovarian Cancer[J]. Mol Pharm, 2020, 17(8):3140-3147. doi: 10.1021/acs.molpharmaceut.0c00437.
|
[27] |
Chen J, Zhang C, Guo Y, et al. Evaluation of a novel ovarian cancer-specific fluorescent antibody probe for targeted near-infrared fluorescence imaging[J]. World J Surg Oncol, 2020, 18(1):66. doi: 10.1186/s12957-020-01843-6.
pmid: 32252772
|
[28] |
Zhang C, Ling X, Guo Y, et al. Evaluation of COC183B2 antibody targeting ovarian cancer by near-infrared fluorescence imaging[J]. Chin J Cancer Res, 2019, 31(4):673-685. doi: 10.21147/j.issn.1000-9604.2019.04.11.
|
[29] |
Liu Q, Zhou X, Feng W, et al. Gonadotropin-Releasing Hormone Receptor-Targeted Near-Infrared Fluorescence Probe for Specific Recognition and Localization of Peritoneal Metastases of Ovarian Cancer[J]. Front Oncol, 2020, 10:266. doi: 10.3389/fonc.2020.00266.
pmid: 32185134
|
[30] |
Terwisscha van Scheltinga AG, van Dam GM, Nagengast WB, et al. Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies[J]. J Nucl Med, 2011, 52(11):1778-1785. doi: 10.2967/jnumed.111.092833.
|
[31] |
Huisman BW, Cankat M, Bosse T, et al. Integrin αvβ6 as a Target for Tumor-Specific Imaging of Vulvar Squamous Cell Carcinoma and Adjacent Premalignant Lesions[J]. Cancers(Basel), 2021, 13(23):6006. doi: 10.3390/cancers13236006.
|
[32] |
Shaw SK, Schreiber CL, Roland FM, et al. High expression of integrin αvβ3 enables uptake of targeted fluorescent probes into ovarian cancer cells and tumors[J]. Bioorg Med Chem, 2018, 26(8):2085-2091. doi: 10.1016/j.bmc.2018.03.007.
|
[33] |
Wang P, Fan Y, Lu L, et al. NIR-Ⅱ nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer[J]. Nat Commun, 2018, 9(1):2898. doi: 10.1038/s41467-018-05113-8.
|