[1] |
Bai K, Lee CL, Liu X, et al. Human placental exosomes induce maternal systemic immune tolerance by reprogramming circulating monocytes[J]. J Nanobiotechnology, 2022, 20(1):86. doi: 10.1186/s12951-022-01283-2.
|
[2] |
Mincheva-Nilsson L. Immunosuppressive Protein Signatures Carried by Syncytiotrophoblast-Derived Exosomes and Their Role in Human Pregnancy[J]. Front Immunol, 2021, 12:717884. doi: 10.3389/fimmu.2021.717884.
|
[3] |
Poh QH, Rai A, Salamonsen LA, et al. Omics insights into extracellular vesicles in embryo implantation and their therapeutic utility[J]. Proteomics, 2023, 23(6):e2200107. doi: 10.1002/pmic.202200107.
|
[4] |
Bai K, Li X, Zhong J, et al. Placenta-Derived Exosomes as a Modulator in Maternal Immune Tolerance During Pregnancy[J]. Front Immunol, 2021, 12:671093. doi: 10.3389/fimmu.2021.671093.
|
[5] |
Hedlund M, Stenqvist AC, Nagaeva O, et al. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function[J]. J Immunol, 2009, 183(1):340-351. doi: 10.4049/jimmunol.0803477.
pmid: 19542445
|
[6] |
Bai K, Li J, Lin L, et al. Placenta exosomal miRNA-30d-5p facilitates decidual macrophage polarization by targeting HDAC9[J]. J Leukoc Biol, 2023, 113(5):434-444. doi: 10.1093/jleuko/qiad022.
|
[7] |
Mukherjee I, Singh S, Karmakar A, et al. New immune horizons in therapeutics and diagnostic approaches to Preeclampsia[J]. Am J Reprod Immunol, 2023, 89(2):e13670. doi: 10.1111/aji.13670.
|
[8] |
Nguyen CM, Sallam M, Islam MS, et al. Placental Exosomes as Biomarkers for Maternal Diseases: Current Advances in Isolation, Characterization, and Detection[J]. ACS Sens, 2023, 8(7):2493-2513. doi: 10.1021/acssensors.3c00689.
|
[9] |
Tiozzo C, Bustoros M, Lin X, et al. Placental extracellular vesicles-associated microRNA-519c mediates endotoxin adaptation in pregnancy[J]. Am J Obstet Gynecol, 2021, 225(6):681.e1-e20. doi: 10.1016/j.ajog.2021.06.075.
|
[10] |
Das K, Paul S, Mukherjee T, et al. Beyond Macromolecules: Extracellular Vesicles as Regulators of Inflammatory Diseases[J]. Cells, 2023, 12(15):1963. doi: 10.3390/cells12151963.
|
[11] |
Paul N, Sultana Z, Fisher JJ, et al. Extracellular vesicles- crucial players in human pregnancy[J]. Placenta, 2023, 140:30-38. doi: 10.1016/j.placenta.2023.07.006.
pmid: 37531747
|
[12] |
Zhang Y, Liu Z, Sun H. Fetal-maternal interactions during pregnancy: a 'three-in-one' perspective[J]. Front Immunol, 2023, 14:1198430. doi: 10.3389/fimmu.2023.1198430.
|
[13] |
Yang F, Zheng Q, Jin L. Dynamic Function and Composition Changes of Immune Cells During Normal and Pathological Pregnancy at the Maternal-Fetal Interface[J]. Front Immunol, 2019, 10:2317. doi: 10.3389/fimmu.2019.02317.
pmid: 31681264
|
[14] |
Zhang Y, Dou Y, Liu Y, et al. Advances in Therapeutic Applications of Extracellular Vesicles[J]. Int J Nanomedicine, 2023, 18:3285-3307. doi: 10.2147/IJN.S409588.
|
[15] |
Lokossou AG, Toudic C, Nguyen PT, et al. Endogenous retrovirus-encoded Syncytin-2 contributes to exosome-mediated immunosuppression of T cells?[J]. Biol Reprod, 2020, 102(1):185-198. doi: 10.1093/biolre/ioz124.
pmid: 31318021
|
[16] |
中华医学会妇产科学分会妊娠期高血压疾病学组. 妊娠期高血压疾病诊治指南(2020)[J]. 中华妇产科杂志, 2020, 55(4):227-238. doi: 10.3760/cma.j.cn112141-20200114-00039.
|
[17] |
Ives CW, Sinkey R, Rajapreyar I, et al. Preeclampsia-Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2020, 76(14):1690-1702. doi: 10.1016/j.jacc.2020.08.014.
pmid: 33004135
|
[18] |
Salomon C, Guanzon D, Scholz-Romero K, et al. Placental Exosomes as Early Biomarker of Preeclampsia: Potential Role of Exosomal MicroRNAs Across Gestation[J]. J Clin Endocrinol Metab, 2017, 102(9):3182-3194. doi: 10.1210/jc.2017-00672.
pmid: 28531338
|
[19] |
Han C, Wang C, Chen Y, et al. Placenta-derived extracellular vesicles induce preeclampsia in mouse models[J]. Haematologica, 2020, 105(6):1686-1694. doi: 10.3324/haematol.2019.226209.
pmid: 31439676
|
[20] |
Wu S, Li Q, Liu X, et al. Placental exosomal miR-125b triggered endothelial barrier injury in preeclampsia[J]. Placenta, 2023, 137:31-37. doi: 10.1016/j.placenta.2023.04.006.
pmid: 37054628
|
[21] |
Chen Z, Wu M, Huang H, et al. Plasma Exosomal miR-199a-5p Derived from Preeclampsia with Severe Features Impairs Endothelial Cell Function via Targeting SIRT1[J]. Reprod Sci, 2022, 29(12):3413-3424. doi: 10.1007/s43032-022-00977-0.
pmid: 36071344
|
[22] |
Whitley JA, Cai H. Engineering extracellular vesicles to deliver CRISPR ribonucleoprotein for gene editing[J]. J Extracell Vesicles, 2023, 12(9):e12343. doi: 10.1002/jev2.12343.
|
[23] |
Ayala-Ramírez P, Machuca-Acevedo C, Gámez T, et al. Assessment of Placental Extracellular Vesicles-Associated Fas Ligand and TNF-Related Apoptosis-Inducing Ligand in Pregnancies Complicated by Early and Late Onset Preeclampsia[J]. Front Physiol, 2021, 12:708824. doi: 10.3389/fphys.2021.708824.
|
[24] |
Sweeting A, Wong J, Murphy HR, et al. A Clinical Update on Gestational Diabetes Mellitus[J]. Endocr Rev, 2022, 43(5):763-793. doi: 10.1210/endrev/bnac003.
pmid: 35041752
|
[25] |
James-Allan LB, Rosario FJ, Barner K, et al. Regulation of glucose homeostasis by small extracellular vesicles in normal pregnancy and in gestational diabetes[J]. FASEB J, 2020, 34(4):5724-5739. doi: 10.1096/fj.201902522RR.
pmid: 32154621
|
[26] |
Nair S, Jayabalan N, Guanzon D, et al. Human placental exosomes in gestational diabetes mellitus carry a specific set of miRNAs associated with skeletal muscle insulin sensitivity[J]. Clin Sci(Lond), 2018, 132(22):2451-2467. doi: 10.1042/CS20180487.
|
[27] |
Gao Z, Wang N, Liu X. Human placenta mesenchymal stem cell-derived exosome shuttling microRNA-130b-3p from gestational diabetes mellitus patients targets ICAM-1 and perturbs human umbilical vein endothelial cell angiogenesis[J]. Acta Diabetol, 2022, 59(8):1091-1107. doi: 10.1007/s00592-022-01910-2.
pmid: 35676597
|
[28] |
Vogel JP, Chawanpaiboon S, Moller AB, et al. The global epidemiology of preterm birth[J]. Best Pract Res Clin Obstet Gynaecol, 2018, 52:3-12. doi: 10.1016/j.bpobgyn.2018.04.003.
pmid: 29779863
|
[29] |
Hussein S, Ju W, Pizzella S, et al. Reduced expression in preterm birth of sFLT-1 and PlGF with a high sFLT-1/PlGF ratio in extracellular vesicles suggests a potential biomarker[J]. Front Endocrinol(Lausanne), 2022, 13:1024587. doi: 10.3389/fendo.2022.1024587.
|
[30] |
Menon R, Dixon CL, Sheller-Miller S, et al. Quantitative Proteomics by SWATH-MS of Maternal Plasma Exosomes Determine Pathways Associated With Term and Preterm Birth[J]. Endocrinology, 2019, 160(3):639-650. doi: 10.1210/en.2018-00820.
pmid: 30668697
|
[31] |
Dixon CL, Sheller-Miller S, Saade GR, et al. Amniotic Fluid Exosome Proteomic Profile Exhibits Unique Pathways of Term and Preterm Labor[J]. Endocrinology, 2018, 159(5):2229-2240. doi: 10.1210/en.2018-00073.
pmid: 29635386
|
[32] |
Chen W, Liu N, Shen S, et al. Fetal growth restriction impairs hippocampal neurogenesis and cognition via Tet1 in offspring[J]. Cell Rep, 2021, 37(5):109912. doi: 10.1016/j.celrep.2021.109912.
|
[33] |
Gilchrist C, Cumberland A, Walker D, et al. Intrauterine growth restriction and development of the hippocampus: implications for learning and memory in children and adolescents[J]. Lancet Child Adolesc Health, 2018, 2(10):755-764. doi: 10.1016/S2352-4642(18)30245-1.
pmid: 30236384
|
[34] |
Miranda J, Paules C, Nair S, et al. Placental exosomes profile in maternal and fetal circulation in intrauterine growth restriction - Liquid biopsies to monitoring fetal growth[J]. Placenta, 2018, 64:34-43. doi: 10.1016/j.placenta.2018.02.006.
pmid: 29626979
|
[35] |
Hromadnikova I, Dvorakova L, Kotlabova K, et al. The Prediction of Gestational Hypertension, Preeclampsia and Fetal Growth Restriction via the First Trimester Screening of Plasma Exosomal C19MC microRNAs[J]. Int J Mol Sci, 2019, 20(12):2972. doi: 10.3390/ijms20122972.
|
[36] |
中华医学会妇产科学分会产科学组, 复发性流产诊治专家共识编写组. 复发性流产诊治专家共识(2022)[J]. 中华妇产科杂志, 2022, 57(9):653-667. doi: 10.3760/cma.j.cn112141-20220421-00259.
|
[37] |
Ghafourian M, Mahdavi R, Akbari Jonoush Z, et al. The implications of exosomes in pregnancy: emerging as new diagnostic markers and therapeutics targets[J]. Cell Commun Signal, 2022, 20(1):51. doi: 10.1186/s12964-022-00853-z.
pmid: 35414084
|