[1] |
Wei Y, Liang Y, Lin H, et al. Autonomic nervous system and inflammation interaction in endometriosis-associated pain[J]. J Neuroinflammation, 2020, 17(1):80. doi: 10.1186/s12974-020-01752-1.
|
[2] |
郎景和. 对子宫内膜异位症认识的历史、现状与发展[J]. 中国实用妇科与产科杂志, 2020, 36(3):193-196. doi: 10.19538/j.fk2020030101.
|
[3] |
彭佩轩, 王莉. 铁死亡在子宫内膜异位症中的研究进展[J]. 国际妇产科学杂志, 2022, 49(5):481-485. doi: 10.12280/gjfckx.20220451.
|
[4] |
Artemova D, Vishnyakova P, Khashchenko E, et al. Endometriosis and Cancer: Exploring the Role of Macrophages[J]. Int J Mol Sci, 2021, 22(10):5196. doi: 10.3390/ijms22105196.
|
[5] |
Abramiuk M, Grywalska E, Małkowska P, et al. The Role of the Immune System in the Development of Endometriosis[J]. Cells, 2022, 11(13):2028. doi: 10.3390/cells11132028.
|
[6] |
许醒, 蔡林峰, 张倩楠, 等. 单细胞与空间转录组分析研究进展[J]. 分析测试学报, 2022, 41(9):1322-1334. doi: 10.19969/j.fxcsxb.22052401.
|
[7] |
Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer[J]. Pharmacol Ther, 2021, 221:107753. doi: 10.1016/j.pharmthera.2020.107753.
|
[8] |
Satake E, Koga K, Takamura M, et al. The roles of polymorphonuclear myeloid-derived suppressor cells in endometriosis[J]. J Reprod Immunol, 2021, 148:103371. doi: 10.1016/j.jri.2021.103371.
|
[9] |
Wang F, Wang H, Sun L, et al. TRIM59 inhibits PPM1A through ubiquitination and activates TGF-β/Smad signaling to promote the invasion of ectopic endometrial stromal cells in endometriosis[J]. Am J Physiol Cell Physiol, 2020, 319(2):C392-C401. doi: 10.1152/ajpcell.00127.2019.
|
[10] |
de Bruin N, Schneider AK, Reus P, et al. Ibuprofen, Flurbiprofen, Etoricoxib or Paracetamol Do Not Influence ACE2 Expression and Activity In Vitro or in Mice and Do Not Exacerbate In-Vitro SARS-CoV-2 Infection[J]. Int J Mol Sci, 2022, 23(3):1049. doi: 10.3390/ijms23031049.
|
[11] |
Wang S, Zhang M, Zhang T, et al. microRNA-141 inhibits TGF-β1-induced epithelial-to-mesenchymal transition through inhibition of the TGF-β1/SMAD2 signalling pathway in endometriosis[J]. Arch Gynecol Obstet, 2020, 301(3):707-714. doi: 10.1007/s00404-019-05429-w.
pmid: 31903498
|
[12] |
Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm[J]. J Immunol, 2000, 164(12):6166-6173. doi: 10.4049/jimmunol.164.12.6166.
pmid: 10843666
|
[13] |
Jeljeli M, Riccio L, Chouzenoux S, et al. Macrophage Immune Memory Controls Endometriosis in Mice and Humans[J]. Cell Rep, 2020, 33(5):108325. doi: 10.1016/j.celrep.2020.108325.
|
[14] |
Hogg C, Horne AW, Greaves E. Endometriosis-Associated Macrophages: Origin, Phenotype, and Function[J]. Front Endocrinol(Lausanne), 2020, 11:7. doi: 10.3389/fendo.2020.00007.
|
[15] |
Bacci M, Capobianco A, Monno A, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease[J]. Am J Pathol, 2009, 175(2):547-556. doi: 10.2353/ajpath.2009.081011.
pmid: 19574425
|
[16] |
Ding S, Guo X, Zhu L, et al. Macrophage-derived netrin-1 contributes to endometriosis-associated pain[J]. Ann Transl Med, 2021, 9(1):29. doi: 10.21037/atm-20-2161.
pmid: 33553322
|
[17] |
Gibson DA, Collins F, De Leo B, et al. Pelvic pain correlates with peritoneal macrophage abundance not endometriosis[J]. Reprod Fertil, 2021, 2(1):47-57. doi: 10.1530/RAF-20-0072.
pmid: 35128432
|
[18] |
Li J, Yan S, Li Q, et al. Macrophage-associated immune checkpoint CD47 blocking ameliorates endometriosis[J]. Mol Hum Reprod, 2022, 28(5):gaac010. doi: 10.1093/molehr/gaac010.
|
[19] |
Tang Y, Zhang Y, Li X, et al. Immune landscape and the key role of APOE+ monocytes of lupus nephritis under the single-cell and spatial transcriptional vista[J]. Clin Transl Med, 2023, 13(4):e1237. doi: 10.1002/ctm2.1237.
pmid: 37026377
|
[20] |
Margaroli C, Benson P, Sharma NS, et al. Spatial mapping of SARS-CoV-2 and H1N1 lung injury identifies differential transcriptional signatures[J]. Cell Rep Med, 2021, 2(4):100242. doi: 10.1016/j.xcrm.2021.100242.
|
[21] |
Kobayashi H, Imanaka S. Understanding the molecular mechanisms of macrophage polarization and metabolic reprogramming in endometriosis: A narrative review[J]. Reprod Med Biol, 2022, 21(1):e12488. doi: 10.1002/rmb2.12488.
|
[22] |
Chen S, Liu Y, Zhong Z, et al. Peritoneal immune microenvironment of endometriosis: Role and therapeutic perspectives[J]. Front Immunol, 2023, 14:1134663. doi: 10.3389/fimmu.2023.1134663.
|
[23] |
Zondervan KT, Becker CM, Missmer SA. Endometriosis[J]. N Engl J Med, 2020, 382(13):1244-1256. doi: 10.1056/NEJMra1810764.
|
[24] |
Reis JL, Rosa NN, Ângelo-Dias M, et al. Natural Killer Cell Receptors and Endometriosis: A Systematic Review[J]. Int J Mol Sci, 2022, 24(1):331. doi: 10.3390/ijms24010331.
|
[25] |
Abomaray F, Wagner AK, Chrobok M, et al. The Effect of Mesenchymal Stromal Cells Derived From Endometriotic Lesions on Natural Killer Cell Function[J]. Front Cell Dev Biol, 2021, 9:612714. doi: 10.3389/fcell.2021.612714.
|
[26] |
Yang HL, Zhou WJ, Chang KK, et al. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-β[J]. Reproduction, 2017, 154(6):815-825. doi: 10.1530/REP-17-0342.
|
[27] |
Lamarthée B, Callemeyn J, Van Herck Y, et al. Transcriptional and spatial profiling of the kidney allograft unravels a central role for FcyRⅢ+ innate immune cells in rejection[J]. Nat Commun, 2023, 14(1):4359. doi: 10.1038/s41467-023-39859-7.
pmid: 37468466
|
[28] |
Hoogstad-van Evert J, Paap R, Nap A, et al. The Promises of Natural Killer Cell Therapy in Endometriosis[J]. Int J Mol Sci, 2022, 23(10):5539. doi: 10.3390/ijms23105539.
|
[29] |
Fukui A, Mai C, Saeki S, et al. Pelvic endometriosis and natural killer cell immunity[J]. Am J Reprod Immunol, 2021, 85(4):e13342. doi: 10.1111/aji.13342.
|
[30] |
Olkowska-Truchanowicz J, Sztokfisz-Ignasiak A, Zwierzchowska A, et al. Endometriotic Peritoneal Fluid Stimulates Recruitment of CD4+CD25highFOXP3+ Treg Cells[J]. J Clin Med, 2021, 10(17):3789. doi: 10.3390/jcm10173789.
|
[31] |
Xiao F, Liu X, Guo SW. Platelets and Regulatory T Cells May Induce a Type 2 Immunity That Is Conducive to the Progression and Fibrogenesis of Endometriosis[J]. Front Immunol, 2020, 11:610963. doi: 10.3389/fimmu.2020.610963.
|
[32] |
Jiang YP, Peng YQ, Wang L, et al. RNA-sequencing identifies differentially expressed genes in T helper 17 cells in peritoneal fluid of patients with endometriosis[J]. J Reprod Immunol, 2022, 149:103453. doi: 10.1016/j.jri.2021.103453.
|
[33] |
Miller JE, Lingegowda H, Sisnett DJ, et al. T helper 17 axis and endometrial macrophage disruption in menstrual effluent provides potential insights into the pathogenesis of endometriosis[J]. F S Sci, 2022, 3(3):279-287. doi: 10.1016/j.xfss.2022.04.007.
|
[34] |
Chang LY, Shan J, Hou XX, et al. Synergy between Th1 and Th2 responses during endometriosis: A review of current understanding[J]. J Reprod Immunol, 2023, 158:103975. doi: 10.1016/j.jri.2023.103975.
|
[35] |
Hudson QJ, Ashjaei K, Perricos A, et al. Endometriosis Patients Show an Increased M2 Response in the Peritoneal CD14+low/CD68+low Macrophage Subpopulation Coupled with an Increase in the T-helper 2 and T-regulatory Cells[J]. Reprod Sci, 2020, 27(10):1920-1931. doi: 10.1007/s43032-020-00211-9.
|
[36] |
Mao X, Zhou D, Lin K, et al. Single-cell and spatial transcriptome analyses revealed cell heterogeneity and immune environment alternations in metastatic axillary lymph nodes in breast cancer[J]. Cancer Immunol Immunother, 2023, 72(3):679-695. doi: 10.1007/s00262-022-03278-2.
|