[1] |
赵雪娅, 杨星宇, 程蔚蔚. 外泌体微小RNA与子痫前期发病机制的研究进展[J]. 中华围产医学杂志, 2018, 21(9):622-625. doi: 10.3760/cma.j.issn.1007-9408.2018.09.010.
doi: 10.3760/cma.j.issn.1007-9408.2018.09.010
|
[2] |
Hu S, Li J, Tong M, et al. MicroRNA-144-3p may participate in the pathogenesis of preeclampsia by targeting Cox-2[J]. Mol Med Rep, 2019, 19(6):4655-4662. doi: 10.3892/mmr.2019.10150.
doi: 10.3892/mmr.2019.10150
|
[3] |
Czernek L, Düchler M. Exosomes as Messengers Between Mother and Fetus in Pregnancy[J]. Int J Mol Sci, 2020, 21(12):4264. doi: 10.3390/ijms21124264.
doi: 10.3390/ijms21124264
|
[4] |
Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19):9412-9420.
pmid: 3597417
|
[5] |
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75(2):193-208. doi: 10.1007/s00018-017-2595-9.
doi: 10.1007/s00018-017-2595-9
|
[6] |
Munich S, Sobo-Vujanovic A, Buchser WJ, et al. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands[J]. Oncoimmunology, 2012, 1(7):1074-1083. doi: 10.4161/onci.20897.
doi: 10.4161/onci.20897
|
[7] |
Prada I, Meldolesi J. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets[J]. Int J Mol Sci, 2016, 17(8):1296. doi: 10.3390/ijms17081296.
doi: 10.3390/ijms17081296
|
[8] |
龚榕铨, 曹恒山, 马敏. 外泌体源性miRNA在子痫前期发病机制中的研究进展[J]. 中华临床医师杂志(电子版), 2020, 14(12):1017-1022. doi: 10.3877/cma.j.issn.1674-0785.2020.12.013.
doi: 10.3877/cma.j.issn.1674-0785.2020.12.013
|
[9] |
Jin J, Menon R. Placental exosomes: A proxy to understand pregnancy complications[J]. Am J Reprod Immunol, 2018, 79(5):e12788. doi: 10.1111/aji.12788.
doi: 10.1111/aji.12788
|
[10] |
Matsubara K, Matsubara Y, Uchikura Y, et al. Pathophysiology of Preeclampsia: The Role of Exosomes[J]. Int J Mol Sci, 2021, 22(5):2572. doi: 10.3390/ijms22052572.
doi: 10.3390/ijms22052572
|
[11] |
Kluszczyńska K, Czernek L, Cypryk W, et al. Methods for the Determination of the Purity of Exosomes[J]. Curr Pharm Des, 2019, 25(42):4464-4485. doi: 10.2174/1381612825666191206162712.
doi: 10.2174/1381612825666191206162712
|
[12] |
Ge Q, Zhou Y, Lu J, et al. miRNA in plasma exosome is stable under different storage conditions[J]. Molecules, 2014, 19(2):1568-1575. doi: 10.3390/molecules19021568.
doi: 10.3390/molecules19021568
|
[13] |
Wang Y, Du X, Wang J. Transfer of miR-15a-5p by placental exosomes promotes pre-eclampsia progression by regulating PI3K/AKT signaling pathway via CDK1[J]. Mol Immunol, 2020, 128:277-286. doi: 10.1016/j.molimm.2020.10.019.
doi: 10.1016/j.molimm.2020.10.019
|
[14] |
张涛, 孟金来. 外泌体在子痫前期血管内皮损伤中的作用[J]. 现代妇产科进展, 2021, 30(4):311-313. doi: 10.13283/j.cnki.xdfckjz. 2021.04.014.
doi: 10.13283/j.cnki.xdfckjz. 2021.04.014
|
[15] |
Hromadnikova I, Kotlabova K, Dvorakova L, et al. Postpartum profiling of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases in women exposed to pregnancy-related complications[J]. Int J Cardiol, 2019, 291:158-167. doi: 10.1016/j.ijcard.2019.05.036.
doi: S0167-5273(19)30564-9
pmid: 31151766
|
[16] |
Pillay P, Vatish M, Duarte R, et al. Exosomal microRNA profiling in early and late onset preeclamptic pregnant women reflects pathophysiology[J]. Int J Nanomedicine, 2019, 14:5637-5657. doi: 10.2147/IJN.S208865.
doi: 10.2147/IJN.S208865
|
[17] |
Salomon C, Guanzon D, Scholz-Romero K, et al. Placental Exosomes as Early Biomarker of Preeclampsia: Potential Role of Exosomal MicroRNAs Across Gestation[J]. J Clin Endocrinol Metab, 2017, 102(9):3182-3194. doi: 10.1210/jc.2017-00672.
doi: 10.1210/jc.2017-00672
pmid: 28531338
|
[18] |
Jia L, Zhou X, Huang X, et al. Maternal and umbilical cord serum-derived exosomes enhance endothelial cell proliferation and migration[J]. FASEB J, 2018, 32(8):4534-4543. doi: 10.1096/fj.201701337RR.
doi: 10.1096/fj.201701337RR
|
[19] |
Zhao XY, Li YM, Chen S, et al. Exosomal encapsulation of miR-125a-5p inhibited trophoblast cell migration and proliferation by regulating the expression of VEGFA in preeclampsia[J]. Biochem Biophys Res Commun, 2020, 525(3):646-653. doi: 10.1016/j.bbrc.2020.02.137.
doi: 10.1016/j.bbrc.2020.02.137
|
[20] |
Devor E, Santillan D, Scroggins S, et al. Trimester-specific plasma exosome microRNA expression profiles in preeclampsia[J]. J Matern Fetal Neonatal Med, 2020, 33(18):3116-3124. doi: 10.1080/14767058. 2019.1569614.
doi: 10.1080/14767058.2019.1569614
pmid: 30700172
|
[21] |
Li H, Ouyang Y, Sadovsky E, et al. Unique microRNA Signals in Plasma Exosomes from Pregnancies Complicated by Preeclampsia[J]. Hypertension, 2020, 75(3):762-771. doi: 10.1161/HYPERTENSIO NAHA.119.14081.
doi: 10.1161/HYPERTENSIO NAHA.119.14081
|
[22] |
Zou AX, Chen B, Li QX, et al. MiR-134 inhibits infiltration of trophoblast cells in placenta of patients with preeclampsia by decreasing ITGB1 expression[J]. Eur Rev Med Pharmacol Sci, 2018, 22(8):2199-2206. doi: 10.26355/eurrev_201804_14804.
doi: 10.26355/eurrev_201804_14804
|
[23] |
Luo R, Shao X, Xu P, et al. MicroRNA-210 contributes to preeclampsia by downregulating potassium channel modulatory factor 1[J]. Hypertension, 2014, 64(4):839-845. doi: 10.1161/HYPERTENSIO NAHA.114.03530.
doi: 10.1161/HYPERTENSIO NAHA.114.03530
|
[24] |
Ishibashi O, Ohkuchi A, Ali MM, et al. Hydroxysteroid(17-β) dehydrogenase 1 is dysregulated by miR-210 and miR-518c that are aberrantly expressed in preeclamptic placentas: a novel marker for predicting preeclampsia[J]. Hypertension, 2012, 59(2):265-273. doi: 10.1161/HYPERTENSIONAHA.111.180232.
doi: 10.1161/HYPERTENSIONAHA.111.180232
pmid: 22203747
|
[25] |
Zhang Y, Fei M, Xue G, et al. Elevated levels of hypoxia-inducible microRNA-210 in pre-eclampsia: new insights into molecular mechanisms for the disease[J]. J Cell Mol Med, 2012, 16(2):249-259. doi: 10.1111/j.1582-4934.2011.01291.x.
doi: 10.1111/j.1582-4934.2011.01291.x
pmid: 21388517
|
[26] |
Shen L, Li Y, Li R, et al. Placenta-associated serum exosomal miR-155 derived from patients with preeclampsia inhibits eNOS expression in human umbilical vein endothelial cells[J]. Int J Mol Med, 2018, 41(3):1731-1739. doi: 10.3892/ijmm.2018.3367.
doi: 10.3892/ijmm.2018.3367
pmid: 29328396
|
[27] |
Hromadnikova I, Dvorakova L, Kotlabova K, et al. The Prediction of Gestational Hypertension, Preeclampsia and Fetal Growth Restriction via the First Trimester Screening of Plasma Exosomal C19MC microRNAs[J]. Int J Mol Sci, 2019, 20(12):2972. doi: 10.3390/ijms20122972.
doi: 10.3390/ijms20122972
|
[28] |
Riazifar M, Mohammadi MR, Pone EJ, et al. Stem Cell-Derived Exosomes as Nanotherapeutics for Autoimmune and Neurodegenerative Disorders[J]. ACS Nano, 2019, 13(6):6670-6688. doi: 10.1021/acsnano.9b01004.
doi: 10.1021/acsnano.9b01004
pmid: 31117376
|
[29] |
Huang Q, Gong M, Tan T, et al. Human Umbilical Cord Mesenchymal Stem Cells-Derived Exosomal MicroRNA-18b-3p Inhibits the Occurrence of Preeclampsia by Targeting LEP[J]. Nanoscale Res Lett, 2021, 16(1):27. doi: 10.1186/s11671-021-03475-5.
doi: 10.1186/s11671-021-03475-5
pmid: 33566191
|
[30] |
Wang D, Na Q, Song GY, et al. Human umbilical cord mesenchymal stem cell-derived exosome-mediated transfer of microRNA-133b boosts trophoblast cell proliferation, migration and invasion in preeclampsia by restricting SGK1[J]. Cell Cycle, 2020, 19(15):1869-1883. doi: 10.1080/15384101.2020.1769394.
doi: 10.1080/15384101.2020.1769394
pmid: 32597300
|
[31] |
Cui J, Chen X, Lin S, et al. MiR-101-containing extracellular vesicles bind to BRD4 and enhance proliferation and migration of trophoblasts in preeclampsia[J]. Stem Cell Res Ther, 2020, 11(1):231. doi: 10.1186/s13287-020-01720-9.
doi: 10.1186/s13287-020-01720-9
|