[1] |
Ohuma EO, Moller AB, Bradley E, et al. National, regional, and global estimates of preterm birth in 2020, with trends from 2010: a systematic analysis[J]. Lancet, 2023, 402(10409):1261-1271. doi: 10.1016/S0140-6736(23)00878-4.
pmid: 37805217
|
[2] |
Yoshida K, Jayyosi C, Lee N, et al. Mechanics of cervical remodelling: insights from rodent models of pregnancy[J]. Interface Focus, 2019, 9(5):20190026. doi: 10.1098/rsfs.2019.0026.
|
[3] |
Anumba D, Stern V, Healey JT, et al. Value of cervical electrical impedance spectroscopy to predict spontaneous preterm delivery in asymptomatic women: the ECCLIPPx prospective cohort study[J]. Ultrasound Obstet Gynecol, 2021, 58(2):293-302. doi: 10.1002/uog.22180.
|
[4] |
Louwagie EM, Carlson L, Over V, et al. Longitudinal ultrasonic dimensions and parametric solid models of the gravid uterus and cervix[J]. PLoS One, 2021, 16(1):e0242118. doi: 10.1371/journal.pone.0242118.
|
[5] |
Amabebe E, Ogidi H, Anumba DO. Matrix metalloproteinase-induced cervical extracellular matrix remodelling in pregnancy and cervical cancer[J]. Reprod Fertil, 2022, 3(3):R177-R191. doi: 10.1530/RAF-22-0015.
|
[6] |
Nott JP, Pervolaraki E, Benson AP, et al. Diffusion tensor imaging determines three-dimensional architecture of human cervix: a cross-sectional study[J]. BJOG, 2018, 125(7):812-818. doi: 10.1111/1471-0528.15002.
|
[7] |
雷玲玲, 宋岩峰. 生物力学在妇产科学的研究进展[J]. 国外医学·妇产科学分册, 2006, 33(2):94-97. doi: 10.3969/j.issn.1674-1870.2006.02.008.
|
[8] |
中国妇幼保健协会宫内疾病防治专委会. 子宫颈机能不全临床诊治中国专家共识(2023年版)[J]. 中国实用妇科与产科杂志, 2023, 39(2):175-179. doi: 10.19538/j.fk2023020112.
|
[9] |
Stern V, Jones GL, Senbeto S, et al. The acceptability of cervical electrical impedance spectroscopy within a multi-modal preterm birth screening package: a mixed methods study[J]. BMC Pregnancy Childbirth, 2022, 22(1):959. doi: 10.1186/s12884-022-05202-z.
|
[10] |
Feng Q, Chaemsaithong P, Duan H, et al. Screening for spontaneous preterm birth by cervical length and shear-wave elastography in the first trimester of pregnancy[J]. Am J Obstet Gynecol, 2022, 227(3):500.e1-e14. doi: 10.1016/j.ajog.2022.04.014.
|
[11] |
Zhang M, Townsel CD, Akers LB, et al. Biomechanical Cervical Assessment Using 2-Dimentional Transvaginal Shear Wave Elastography in Nonpregnant and Pregnant Women: A Prospective Pilot Study[J]. Ultrasound Q, 2021, 37(2):183-190. doi: 10.1097/RUQ.0000000000000561.
pmid: 34057917
|
[12] |
O'Hara S, Zelesco M, Sun Z. Shear Wave Elastography of the Maternal Cervix: A Comparison of Transvaginal and Transabdominal Ultrasound Approaches[J]. J Ultrasound Med, 2021, 40(4):701-712. doi: 10.1002/jum.15440.
|
[13] |
朱银娣, 卞金燕, 王明玥, 等. 中孕期子宫颈剪切波弹性成像联合子宫颈超声对早产的预测价值[J]. 中国医学创新, 2023, 20(5):123-127. doi: 10.3969/j.issn.1674-4985.2023.05.029.
|
[14] |
Woo J, Ge W, Mancheri J, et al. Shear wave elastography: the relationship of the cervical stiffness with gestational age and cervical length- a feasibility study[J]. J Matern Fetal Neonatal Med, 2022, 35(25):9684-9693. doi: 10.1080/14767058.2022.2050896.
|
[15] |
Qi W, Zhao P, Sun Z, et al. Magnetic resonance diffusion tensor imaging of cervical microstructure in normal early and late pregnancy in vivo[J]. Am J Obstet Gynecol, 2021, 224(1):101.e1-e11. doi: 10.1016/j.ajog.2020.07.014.
|
[16] |
Stone J, House M. Measurement of cervical softness before cerclage placement with an aspiration-based device[J]. Am J Obstet Gynecol MFM, 2023, 5(4):100881. doi: 10.1016/j.ajogmf.2023.100881.
|
[17] |
Kyvernitakis I, Lauer P, Malan M, et al. A novel aspiration technique to assess cervical remodelling in patients with or without cervical shortening: Sequence of first changes, definition of cut-off values and impact of cervical pessary, stratified for cervical length[J]. PLoS One, 2023, 18(4):e0283944. doi: 10.1371/journal.pone.0283944.
|
[18] |
Masson LE, O'Brien CM, Gautam R, et al. In vivo Raman spectroscopy monitors cervical change during labor[J]. Am J Obstet Gynecol, 2022, 227(2):275.e1-e14. doi: 10.1016/j.ajog.2022.02.019.
|
[19] |
Synan L, Ghazvini S, Uthaman S, et al. First Trimester Prediction of Preterm Birth in Patient Plasma with Machine-Learning-Guided Raman Spectroscopy and Metabolomics[J]. ACS Appl Mater Interfaces, 2023, 15(32):38185-38200. doi: 10.1021/acsami.3c04260.
|
[20] |
Lee W, Ostadi Moghaddam A, Shen S, et al. An optomechanogram for assessment of the structural and mechanical properties of tissues[J]. Sci Rep, 2021, 11(1):324. doi: 10.1038/s41598-020-79602-6.
pmid: 33431940
|
[21] |
Wharton LK, Anumba D. Techniques for detecting cervical remodeling as a predictor for spontaneous preterm birth: current evidence and future research avenues in patients with multiple pregnancies[J]. J Matern Fetal Neonatal Med, 2023, 36(2):2262081. doi: 10.1080/14767058.2023.2262081.
|
[22] |
Khan S, Qadir M, Khalid A, et al. Characterization of cervical tissue using Mueller matrix polarimetry[J]. Lasers Med Sci, 2023, 38(1):46. doi: 10.1007/s10103-023-03712-6.
|
[23] |
Rehbinder J, Vizet J, Park J, et al. Depolarization imaging for fast and non-invasive monitoring of cervical microstructure remodeling in vivo during pregnancy[J]. Sci Rep, 2022, 12(1):12321. doi: 10.1038/s41598-022-15852-w.
pmid: 35853917
|
[24] |
Zhang Y, Kaplan D, House MD. Tissue Engineering for Cervical Function in Pregnancy[J]. Curr Opin Biomed Eng, 2022,22:100385. doi: 10.1016/j.cobme.2022.100385.
|
[25] |
Zhang Y, Raia N, Peterson A, et al. Injectable Silk-Based Hydrogel as an Alternative to Cervical Cerclage: A Rabbit Study[J]. Tissue Eng Part A, 2020, 26(7/8):379-386. doi: 10.1089/ten.TEA.2019.0210.
|
[26] |
Raia NR, Bakaysa SL, Ghezzi CE, et al. Ex vivo pregnant-like tissue model to assess injectable hydrogel for preterm birth prevention[J]. J Biomed Mater Res B Appl Biomater, 2020, 108(2):468-474. doi: 10.1002/jbm.b.34403.
|
[27] |
Koullali B, Zhang Y, Peterson A, et al. Cervical Augmentation with an Injectable Silk-Based Gel: Biocompatibility in a Rat Model of Pregnancy[J]. Reprod Sci, 2020, 27(5):1215-1221. doi: 10.1007/s43032-019-00111-7.
pmid: 32046447
|
[28] |
Zhang W, Chen J. Diffusion Tensor Imaging (DTI) of the Cesarean-Scarred Uterus in vivo at 3T: Comparison Study of DTI Parameters Between Nonpregnant and Pregnant Cases[J]. J Magn Reson Imaging, 2020, 51(1):124-130. doi: 10.1002/jmri.26868.
pmid: 31322306
|
[29] |
Chatterjee A, Saghian R, Dorogin A, et al. Combination of histochemical analyses and micro-MRI reveals regional changes of the murine cervix in preparation for labor[J]. Sci Rep, 2021, 11(1):4903. doi: 10.1038/s41598-021-84036-9.
pmid: 33649420
|
[30] |
Suarez AC, Gimenez CJ, Russell SR, et al. Pregnancy-induced remodeling of the murine reproductive tract: a longitudinal in vivo magnetic resonance imaging study[J]. Sci Rep, 2024, 14(1):586. doi: 10.1038/s41598-023-50437-1.
|
[31] |
Moghaddam AO, Lin Z, Sivaguru M, et al. Heterogeneous microstructural changes of the cervix influence cervical funneling[J]. Acta Biomater, 2022, 140:434-445. doi: 10.1016/j.actbio.2021.12.025.
|
[32] |
Fang S, Shi L, Vink JY, et al. Equilibrium Mechanical Properties of the Nonhuman Primate Cervix[J]. J Biomech Eng, 2024, 146(8):081001. doi: 10.1115/1.4064558.
|
[33] |
Francés-Herrero E, Lopez R, Hellström M, et al. Bioengineering trends in female reproduction: a systematic review[J]. Hum Reprod Update, 2022, 28(6):798-837. doi: 10.1093/humupd/dmac025.
pmid: 35652272
|
[34] |
Shi L, Hu L, Lee N, et al. Three-dimensional anisotropic hyperelastic constitutive model describing the mechanical response of human and mouse cervix[J]. Acta Biomater, 2022, 150:277-294. doi: 10.1016/j.actbio.2022.07.062.
pmid: 35931278
|
[35] |
Shi L, Myers K. A finite porous-viscoelastic model capturing mechanical behavior of human cervix under multi-step spherical indentation[J]. J Mech Behav Biomed Mater, 2023,143:105875. doi: 10.1016/j.jmbbm.2023.105875.
|