[1] |
Januar V, Desoye G, Novakovic B, et al. Epigenetic regulation of human placental function and pregnancy outcome: considerations for causal inference[J]. Am J Obstet Gynecol, 2015, 213(Suppl 4):S182-S196. doi: 10.1016/j.ajog.2015.07.011.
doi: 10.1016/j.ajog.2015.07.011
|
[2] |
许晓红, 关红琼. 子痫前期中长链非编码RNA相关研究新进展[J]. 国际妇产科学杂志, 2020, 47(6):648-652. doi: 10.3969/j.issn.1674-1870.2020.06.010.
doi: 10.3969/j.issn.1674-1870.2020.06.010
|
[3] |
Gao WL, Li D, Xiao ZX, et al. Detection of global DNA methylation and paternally imprinted H19 gene methylation in preeclamptic placentas[J]. Hypertens Res, 2011, 34(5):655-661. doi: 10.1038/hr.2011.9.
doi: 10.1038/hr.2011.9
|
[4] |
Li X, Wu C, Shen Y, et al. Ten-eleven translocation 2 demethylates the MMP9 promoter, and its down-regulation in preeclampsia impairs trophoblast migration and invasion[J]. J Biol Chem, 2018, 293(26):10059-10070. doi: 10.1074/jbc.RA117.001265.
doi: 10.1074/jbc.RA117.001265
|
[5] |
Ching T, Ha J, Song MA, et al. Genome-scale hypomethylation in the cord blood DNAs associated with early onset preeclampsia[J]. Clin Epigenetics, 2015, 7(1):21. doi: 10.1186/s13148-015-0052-x.
doi: 10.1186/s13148-015-0052-x
|
[6] |
Yu GZ, Aye CY, Lewandowski AJ, et al. Association of Maternal Antiangiogenic Profile at Birth With Early Postnatal Loss of Microvascular Density in Offspring of Hypertensive Pregnancies[J]. Hypertension, 2016, 68(3):749-759. doi: 10.1161/HYPERTENSIONAHA.116.07586.
doi: 10.1161/HYPERTENSIONAHA.116.07586
|
[7] |
Tang Y, Ye W, Liu X, et al. VEGF and sFLT-1 in serum of PIH patients and effects on the foetus[J]. Exp Ther Med, 2019, 17(3):2123-2128. doi: 10.3892/etm.2019.7184.
doi: 10.3892/etm.2019.7184
|
[8] |
Morton JS, Cooke CL, Davidge ST. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy[J]. Physiol Rev, 2016, 96(2):549-603. doi: 10.1152/physrev.00015.2015.
doi: 10.1152/physrev.00015.2015
pmid: 26887677
|
[9] |
Fox R, Kitt J, Leeson P, et al. Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring[J]. J Clin Med, 2019, 8(10):1625. doi: 10.3390/jcm8101625.
doi: 10.3390/jcm8101625
|
[10] |
Lazdam M, De La Horra A, Pitcher A, et al. Elevated blood pressure in offspring born premature to hypertensive pregnancy: is endothelial dysfunction the underlying vascular mechanism?[J]. Hypertens, 2010, 56(1):159-165. doi: 10.1161/HYPERTENSIONAHA.110.150235.
doi: 10.1161/HYPERTENSIONAHA.110.150235
|
[11] |
Herzog EM, Eggink AJ, Reijnierse A, et al. Impact of early- and late-onset preeclampsia on features of placental and newborn vascular health[J]. Placenta, 2017, 49:72-79. doi: 10.1016/j.placenta.2016.11.014.
doi: 10.1016/j.placenta.2016.11.014
|
[12] |
Lacolley P, Regnault V, Segers P, et al. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease[J]. Physiol Rev, 2017, 97(4):1555-1617. doi: 10.1152/physrev.00003.2017.
doi: 10.1152/physrev.00003.2017
pmid: 28954852
|
[13] |
Lawlor DA, Macdonald-Wallis C, Fraser A, et al. Cardiovascular biomarkers and vascular function during childhood in the offspring of mothers with hypertensive disorders of pregnancy: findings from the Avon Longitudinal Study of Parents and Children[J]. Eur Heart J, 2012, 33(3):335-345. doi: 10.1093/eurheartj/ehr300.
doi: 10.1093/eurheartj/ehr300
|
[14] |
Armstrong DW, Tse MY, Wong PG, et al. Gestational hypertension and the developmental origins of cardiac hypertrophy and diastolic dysfunction[J]. Mol Cell Biochem, 2014, 391(1/2):201-209. doi: 10.1007/s11010-014-2003-9.
doi: 10.1007/s11010-014-2003-9
|
[15] |
Youssef L, Miranda J, Paules C, et al. Fetal cardiac remodeling and dysfunction is associated with both preeclampsia and fetal growth restriction[J]. Am J Obstet Gynecol, 2020, 222(1):79.e1-e9. doi: 10.1016/j.ajog.2019.07.025.
doi: 10.1016/j.ajog.2019.07.025
|
[16] |
Timpka S, Macdonald-Wallis C, Hughes AD, et al. Hypertensive Disorders of Pregnancy and Offspring Cardiac Structure and Function in Adolescence[J]. J Am Heart Assoc, 2016, 5(11):e003906. doi: 10.1161/JAHA.116.003906.
doi: 10.1161/JAHA.116.003906
|
[17] |
Aye CYL, Lewandowski AJ, Oster J, et al. Neonatal autonomic function after pregnancy complications and early cardiovascular development[J]. Pediatr Res, 2018, 84(1):85-91. doi: 10.1038/s41390-018-0021-0.
doi: 10.1038/s41390-018-0021-0
|
[18] |
Lewandowski AJ, Raman B, Bertagnolli M, et al. Association of Preterm Birth With Myocardial Fibrosis and Diastolic Dysfunction in Young Adulthood[J]. J Am Coll Cardiol, 2021, 78(7):683-692. doi: 10.1016/j.jacc.2021.05.053.
doi: 10.1016/j.jacc.2021.05.053
pmid: 34384550
|
[19] |
Lewandowski AJ, Augustine D, Lamata P, et al. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function[J]. Circulation, 2013, 127(2):197-206. doi: 10.1161/CIRCULATIONAHA.112.126920.
doi: 10.1161/CIRCULATIONAHA.112.126920
pmid: 23224059
|
[20] |
Yu L, Zhou Q, Peng Q, et al. Velocity vector imaging echocardiography and NT-proBNP study of fetal cardiac function in pregnancy-induced maternal hypertension[J]. J Clin Ultrasound, 2019, 47(5):285-291. doi: 10.1002/jcu.22720.
doi: 10.1002/jcu.22720
|
[21] |
何才通, 李基增, 罗宇迪, 等. HDCP对胎儿心脏发育、子宫动脉血流参数的影响[J]. 解放军预防医学杂志, 2019, 37(2):157-158.
|
[22] |
朱雅芸, 区薛宜, 谢纯平, 等. 超声评估晚孕期妊娠高血压综合征母胎心功能及胎儿生长发育的价值分析[J]. 中国医药科学, 2021, 11(9):187-189,193. doi: 10.3969/j.issn.2095-0616.2021.09.049.
doi: 10.3969/j.issn.2095-0616.2021.09.049
|
[23] |
Breatnach CR, Monteith C, Mcsweeney L, et al. The Impact of Maternal Gestational Hypertension and the Use of Anti-Hypertensives on Neonatal Myocardial Performance[J]. Neonatology, 2018, 113(1):21-26. doi: 10.1159/000480396.
doi: 10.1159/000480396
pmid: 28954269
|
[24] |
Mutlu K, Karadas U, Yozgat Y, et al. Echocardiographic evaluation of cardiac functions in newborns of mildly preeclamptic pregnant women within postnatal 24-48 hours[J]. J Obstet Gynaecol, 2018, 38(1):16-21. doi: 10.1080/01443615.2017.1322564.
doi: 10.1080/01443615.2017.1322564
|