[1] |
Reijnders IF, Mulders A, Koster M. Placental development and function in women with a history of placenta-related complications: a systematic review[J]. Acta Obstet Gynecol Scand, 2018, 97(3):248-257. doi: 10.1111/aogs.13259.
doi: 10.1111/aogs.13259
|
[2] |
Aplin JD, Myers JE, Timms K, et al. Tracking placental development in health and disease[J]. Nat Rev Endocrinol, 2020, 16(9):479-494. doi: 10.1038/s41574-020-0372-6.
doi: 10.1038/s41574-020-0372-6
pmid: 32601352
|
[3] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072. doi: 10.1016/j.cell.2012.03.042.
doi: 10.1016/j.cell.2012.03.042
|
[4] |
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease[J]. Cell, 2017, 171(2):273-285. doi: 10.1016/j.cell.2017.09.021.
doi: S0092-8674(17)31070-X
pmid: 28985560
|
[5] |
Beharier O, Kajiwara K, Sadovsky Y. Ferroptosis, trophoblast lipotoxic damage, and adverse pregnancy outcome[J]. Placenta, 2021, 108:32-38. doi: 10.1016/j.placenta.2021.03.007.
doi: 10.1016/j.placenta.2021.03.007
pmid: 33812183
|
[6] |
Ying JF, Lu ZB, Fu LQ, et al. The role of iron homeostasis and iron-mediated ROS in cancer[J]. Am J Cancer Res, 2021, 11(5):1895-1912.
|
[7] |
Chen X, Comish PB, Tang D, et al. Characteristics and Biomarkers of Ferroptosis[J]. Front Cell Dev Biol, 2021, 9:637162. doi: 10.3389/fcell.2021.637162.
doi: 10.3389/fcell.2021.637162
|
[8] |
Li S, Huang Y. Ferroptosis: an iron-dependent cell death form linking metabolism, diseases, immune cell and targeted therapy[J]. Clin Transl Oncol, 2022, 24(1): 1-12. doi: 10.1007/s12094-021-02669-8.
doi: 10.1007/s12094-021-02669-8
|
[9] |
Sato M, Kusumi R, Hamashima S, et al. The ferroptosis inducer erastin irreversibly inhibits system x(c)- and synergizes with cisplatin to increase cisplatin′s cytotoxicity in cancer cells[J]. Sci Rep, 2018, 8(1):968. doi: 10.1038/s41598-018-19213-4.
doi: 10.1038/s41598-018-19213-4
|
[10] |
Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis[J]. FEBS J, 2021 Jun 6. doi: 10.1111/febs.16059.
doi: 10.1111/febs.16059
|
[11] |
Ng SW, Norwitz SG, Norwitz ER. The Impact of Iron Overload and Ferroptosis on Reproductive Disorders in Humans: Implications for Preeclampsia[J]. Int J Mol Sci, 2019, 20(13):3283. doi: 10.3390/ijms20133283.
doi: 10.3390/ijms20133283
|
[12] |
Doll S, Proneth B, Tyurina YY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1):91-98. doi: 10.1038/nchembio.2239.
doi: 10.1038/nchembio.2239
|
[13] |
Fisher AL, Nemeth E. Iron homeostasis during pregnancy[J]. Am J Clin Nutr, 2017, 106(Suppl 6):1567S-1574S. doi: 10.3945/ajcn.117.155812.
doi: 10.3945/ajcn.117.155812
|
[14] |
Sangkhae V, Fisher AL, Wong S, et al. Effects of maternal iron status on placental and fetal iron homeostasis[J]. J Clin Invest, 2020, 130(2):625-640. doi: 10.1172/JCI127341.
doi: 10.1172/JCI127341
pmid: 31661462
|
[15] |
Burton GJ, Cindrova-Davies T, Yung HW, et al. HYPOXIA AND REPRODUCTIVE HEALTH: Oxygen and development of the human placenta[J]. Reproduction, 2021, 161(1):F53-F65. doi: 10.1530/REP-20-0153.
doi: 10.1530/REP-20-0153
|
[16] |
Aouache R, Biquard L, Vaiman D, et al. Oxidative Stress in Preeclampsia and Placental Diseases[J]. Int J Mol Sci, 2018, 19(5):1496. doi: 10.3390/ijms19051496.
doi: 10.3390/ijms19051496
|
[17] |
Brown SH, Eather SR, Freeman DJ, et al. A Lipidomic Analysis of Placenta in Preeclampsia: Evidence for Lipid Storage[J]. PLoS One, 2016, 11(9):e0163972. doi: 10.1371/journal.pone.0163972.
doi: 10.1371/journal.pone.0163972
|
[18] |
Pavličev M, Wagner GP, Chavan AR, et al. Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface[J]. Genome Res, 2017, 27(3):349-361. doi: 10.1101/gr.207597.116.
doi: 10.1101/gr.207597.116
pmid: 28174237
|
[19] |
Gutierrez-Aguirre CH, García-Lozano JA, Treviño-Montemayor OR, et al. Comparative analysis of iron status and other hematological parameters in preeclampsia[J]. Hematology, 2017, 22(1):36-40. doi: 10.1080/10245332.2016.1220120.
doi: 10.1080/10245332.2016.1220120
pmid: 27558940
|
[20] |
Drakesmith H, Prentice AM. Hepcidin and the iron-infection axis[J]. Science, 2012, 338(6108):768-772. doi: 10.1126/science.1224577.
doi: 10.1126/science.1224577
pmid: 23139325
|
[21] |
Jaeggi T, Kortman GA, Moretti D, et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants[J]. Gut, 2015, 64(5):731-742. doi: 10.1136/gutjnl-2014-307720.
doi: 10.1136/gutjnl-2014-307720
pmid: 25143342
|
[22] |
Mishra J, Srivastava SK, Pandey KB. Compromised Renal and Hepatic Functions and Unsteady Cellular Redox State during Preeclampsia and Gestational Diabetes Mellitus[J]. Arch Med Res, 2021, 52(6):635-640. doi: 10.1016/j.arcmed.2021.03.003.
doi: 10.1016/j.arcmed.2021.03.003
|
[23] |
Xu M, Guo D, Gu H, et al. Selenium and Preeclampsia: a Systematic Review and Meta-analysis[J]. Biol Trace Elem Res, 2016, 171(2):283-292. doi: 10.1007/s12011-015-0545-7.
doi: 10.1007/s12011-015-0545-7
|
[24] |
Peng X, Lin Y, Li J, et al. Evaluation of Glutathione Peroxidase 4 role in Preeclampsia[J]. Sci Rep, 2016, 6:33300. doi: 10.1038/srep33300.
doi: 10.1038/srep33300
|
[25] |
Zhang H, He Y, Wang JX, et al. miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia[J]. Redox Biol, 2020, 29:101402. doi: 10.1016/j.redox.2019.101402.
doi: 10.1016/j.redox.2019.101402
|
[26] |
Dewey KG, Oaks BM. U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation[J]. Am J Clin Nutr, 2017, 106(Suppl 6):1694S-1702S. doi: 10.3945/ajcn.117.156075.
doi: 10.3945/ajcn.117.156075
|
[27] |
Bai RX, Tang ZY. Long non-coding RNA H19 regulates Bcl-2, Bax and phospholipid hydroperoxide glutathione peroxidase expression in spontaneous abortion[J]. Exp Ther Med, 2021, 21(1):41. doi: 10.3892/etm.2020.9473.
doi: 10.3892/etm.2020.9473
|
[28] |
Beharier O, Tyurin VA, Goff JP, et al. PLA2G6 guards placental trophoblasts against ferroptotic injury[J]. Proc Natl Acad Sci U S A, 2020, 117(44):27319-27328. doi: 10.1073/pnas.2009201117.
doi: 10.1073/pnas.2009201117
pmid: 33087576
|
[29] |
Hernandez TL, Brand-Miller JC. Nutrition Therapy in Gestational Diabetes Mellitus: Time to Move Forward[J]. Diabetes Care, 2018, 41(7):1343-1345. doi: 10.2337/dci18-0014.
doi: 10.2337/dci18-0014
pmid: 29934477
|
[30] |
Peng HY, Li MQ, Li HP. High glucose suppresses the viability and proliferation of HTR-8/SVneo cells through regulation of the miR-137/PRKAA1/IL-6 axis[J]. Int J Mol Med, 2018, 42(2):799-810. doi: 10.3892/ijmm.2018.3686.
doi: 10.3892/ijmm.2018.3686
|
[31] |
Rawal S, Hinkle SN, Bao W, et al. A longitudinal study of iron status during pregnancy and the risk of gestational diabetes: findings from a prospective, multiracial cohort[J]. Diabetologia, 2017, 60(2):249-257. doi: 10.1007/s00125-016-4149-3.
doi: 10.1007/s00125-016-4149-3
|
[32] |
Han D, Jiang L, Gu X, et al. SIRT3 deficiency is resistant to autophagy-dependent ferroptosis by inhibiting the AMPK/mTOR pathway and promoting GPX4 levels[J]. J Cell Physiol, 2020, 235(11):8839-8851. doi: 10.1002/jcp.29727.
doi: 10.1002/jcp.29727
|