国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (6): 655-658.doi: 10.12280/gjfckx.2022455
收稿日期:
2022-06-07
出版日期:
2022-12-15
发布日期:
2023-01-11
通讯作者:
王永红
E-mail:wangyh19072000@126.com
基金资助:
Received:
2022-06-07
Published:
2022-12-15
Online:
2023-01-11
Contact:
WANG Yong-hong
E-mail:wangyh19072000@126.com
摘要:
子痫前期(preeclampsia,PE)是临床常见的妊娠期特发性疾病,其病情变化呈动态性进展,临床表现多样化,病因机制迄今尚未完全阐明,主要认为与遗传因素、免疫因素、营养因素和环境因素等密切相关。近年有研究表明,哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路通过调控细胞增殖、侵袭、迁移和凋亡能力,参与胎盘滋养细胞与血管内皮细胞活性的调节,且胰岛素信号通过激活mTOR信号通路启动下游分子调节细胞代谢,导致母体血管内皮损伤、子宫螺旋小动脉重构受损,以及炎症免疫反应异常等,参与PE的发生。通过探讨mTOR信号通路与PE发病的相关性,为PE的病理生理学研究及疾病的治疗提供理论基础。
赵钰林, 王永红. mTOR信号通路与子痫前期发病的相关性[J]. 国际妇产科学杂志, 2022, 49(6): 655-658.
ZHAO Yu-lin, WANG Yong-hong. The Relationship between mTOR Signaling Pathway and Preeclampsia[J]. Journal of International Obstetrics and Gynecology, 2022, 49(6): 655-658.
[1] |
Li B, Yang H. Comparison of clinical features and pregnancy outcomes in early- and late-onset preeclampsia with HELLP syndrome: a 10-year retrospective study from a tertiary hospital and referral center in China[J]. BMC Pregnancy Childbirth, 2022, 22(1):186. doi: 10.1186/s12884-022-04466-9.
doi: 10.1186/s12884-022-04466-9 |
[2] |
Nazari N, Jafari F, Ghalamfarsa G, et al. The emerging role of microRNA in regulating the mTOR signaling pathway in immune and inflammatory responses[J]. Immunol Cell Biol, 2021, 99(8):814-832. doi: 10.1111/imcb.12477.
doi: 10.1111/imcb.12477 |
[3] |
Mafi S, Mansoori B, Taeb S, et al. mTOR-Mediated Regulation of Immune Responses in Cancer and Tumor Microenvironment[J]. Front Immunol, 2021, 12:774103. doi: 10.3389/fimmu.2021.774103.
doi: 10.3389/fimmu.2021.774103 |
[4] |
Fruman DA, Chiu H, Hopkins BD, et al. The PI3K Pathway in Human Disease[J]. Cell, 2017, 170(4):605-635. doi: 10.1016/j.cell.2017.07.029.
doi: S0092-8674(17)30865-6 pmid: 28802037 |
[5] |
Roudsari NM, Lashgari NA, Momtaz S, et al. Inhibitors of the PI3K/Akt/mTOR Pathway in Prostate Cancer Chemoprevention and Intervention[J]. Pharmaceutics, 2021, 13(8):1195. doi: 10.3390/pharmaceutics13081195.
doi: 10.3390/pharmaceutics13081195 |
[6] |
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer[J]. Semin Cancer Biol, 2021 Jun 25:S1044-579 X(21)00188-7. doi: 10.1016/j.semcancer.2021.06.019. Epub ahead of print.
doi: 10.1016/j.semcancer.2021.06.019 |
[7] |
Aiko Y, Askew DJ, Aramaki S, et al. Differential levels of amino acid transporters System L and ASCT2, and the mTOR protein in placenta of preeclampsia and IUGR[J]. BMC Pregnancy Childbirth, 2014, 14:181. doi: 10.1186/1471-2393-14-181.
doi: 10.1186/1471-2393-14-181 |
[8] |
Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer[J]. Int J Mol Sci, 2012, 13(2):1886-1918. doi: 10.3390/ijms13021886.
doi: 10.3390/ijms13021886 pmid: 22408430 |
[9] |
Park JK, Jeong JW, Kang MY, et al. Inhibition of the PI3K-Akt pathway suppresses sFlt1 expression in human placental hypoxia models in vitro[J]. Placenta, 2010, 31(7):621-629. doi: 10.1016/j.placenta.2010.04.009.
doi: 10.1016/j.placenta.2010.04.009 pmid: 20488538 |
[10] |
Chen J, Yue C, Xu J, et al. Downregulation of receptor tyrosine kinase-like orphan receptor 1 in preeclampsia placenta inhibits human trophoblast cell proliferation, migration, and invasion by PI3K/AKT/mTOR pathway accommodation[J]. Placenta, 2019, 82:17-24. doi: 10.1016/j.placenta.2019.05.002.
doi: S0143-4004(19)30102-X pmid: 31174622 |
[11] |
Baines KJ, Renaud SJ. Transcription Factors That Regulate Trophoblast Development and Function[J]. Prog Mol Biol Transl Sci, 2017, 145:39-88. doi: 10.1016/bs.pmbts.2016.12.003.
doi: 10.1016/bs.pmbts.2016.12.003 |
[12] |
Wang Y, Cheng K, Zhou W, et al. miR-141-5p regulate ATF2 via effecting MAPK1/ERK2 signaling to promote preeclampsia[J]. Biomed Pharmacother, 2019, 115:108953. doi: 10.1016/j.biopha.2019.108953.
doi: 10.1016/j.biopha.2019.108953 |
[13] |
Liu HQ, Wang YH, Wang LL, et al. Predictive Value of Free β-hCG Multiple of the Median for Women with Preeclampsia[J]. Gynecol Obstet Invest, 2015 Aug 26. doi: 10.1159/000433434. Epub ahead of print.
doi: 10.1159/000433434 |
[14] |
Shen H, Jin M, Gu S, et al. CD97 Is Decreased in Preeclamptic Placentas and Promotes Human Trophoblast Invasion Through PI3K/Akt/mTOR Signaling Pathway[J]. Reprod Sci, 2020, 27(8):1553-1561. doi: 10.1007/s43032-020-00183-w.
doi: 10.1007/s43032-020-00183-w pmid: 32430705 |
[15] |
Ling L, Yuan X, Liu X, et al. A novel peptide promotes human trophoblast proliferation and migration through PI3K/Akt/mTOR signaling pathway[J]. Ann Transl Med, 2021, 9(12):981. doi: 10.21037/atm-21-2574.
doi: 10.21037/atm-21-2574 pmid: 34277781 |
[16] |
Li T, Wei S, Fan C, et al. Nesfatin-1 Promotes Proliferation, Migration and Invasion of HTR-8/SVneo Trophoblast Cells and Inhibits Oxidative Stress via Activation of PI3K/AKT/mTOR and AKT/GSK3β Pathway[J]. Reprod Sci, 2021, 28(2):550-561. doi: 10.1007/s43032-020-00324-1.
doi: 10.1007/s43032-020-00324-1 |
[17] |
He C, Shan N, Xu P, et al. Hypoxia-induced Downregulation of SRC-3 Suppresses Trophoblastic Invasion and Migration Through Inhibition of the AKT/mTOR Pathway: Implications for the Pathogenesis of Preeclampsia[J]. Sci Rep, 2019, 9(1):10349. doi: 10.1038/s41598-019-46699-3.
doi: 10.1038/s41598-019-46699-3 pmid: 31316078 |
[18] |
You X, Cui H, Yu N, et al. Knockdown of DDX46 inhibits trophoblast cell proliferation and migration through the PI3K/Akt/mTOR signaling pathway in preeclampsia[J]. Open Life Sci, 2020, 15(1):400-408. doi: 10.1515/biol-2020-0043.
doi: 10.1515/biol-2020-0043 pmid: 33817228 |
[19] |
Chu Y, Chen W, Peng W, et al. Amnion-Derived Mesenchymal Stem Cell Exosomes-Mediated Autophagy Promotes the Survival of Trophoblasts Under Hypoxia Through mTOR Pathway by the Downregulation of EZH2[J]. Front Cell Dev Biol, 2020, 8:545852. doi: 10.3389/fcell.2020.545852.
doi: 10.3389/fcell.2020.545852 |
[20] |
Lai W, Yu L. Elevated MicroRNA 183 Impairs Trophoblast Migration and Invasiveness by Downregulating FOXP1 Expression and Elevating GNG7 Expression during Preeclampsia[J]. Mol Cell Biol, 2020, 41(1):e00236-20. doi: 10.1128/MCB.00236-20.
doi: 10.1128/MCB.00236-20 |
[21] |
Liu J, Zhang Q, Ma N. LncRNA GASAL 1 Interacts with SRSF1 to Regulate Trophoblast Cell Proliferation, Invasion, and Apoptosis Via the mTOR Signaling Pathway[J]. Cell Transplant, 2020, 29:963689720965182. doi: 10.1177/0963689720965182.
doi: 10.1177/0963689720965182 |
[22] |
徐振华, 马廷学, 王永红. 中性粒细胞活化导致血管内皮功能损伤在子痫前期发病中的作用研究进展[J]. 国际妇产科学杂志, 2020, 47(4):365-368. doi: 10.3969/j.issn.1674-1870.2020.04.001.
doi: 10.3969/j.issn.1674-1870.2020.04.001 |
[23] |
Yang TL, Lee PL, Lee DY, et al. Differential regulations of fibronectin and laminin in Smad2 activation in vascular endothelial cells in response to disturbed flow[J]. J Biomed Sci, 2018, 25(1):1. doi: 10.1186/s12929-017-0402-4.
doi: 10.1186/s12929-017-0402-4 |
[24] |
Lai WS, Ding YL. GNG7 silencing promotes the proliferation and differentiation of placental cytotrophoblasts in preeclampsia rats through activation of the mTOR signaling pathway[J]. Int J Mol Med, 2019, 43(5):1939-1950. doi: 10.3892/ijmm.2019.4129.
doi: 10.3892/ijmm.2019.4129 |
[25] |
Huang J, Zheng L, Wang F, et al. Mangiferin ameliorates placental oxidative stress and activates PI3K/Akt/mTOR pathway in mouse model of preeclampsia[J]. Arch Pharm Res, 2020, 43(2):233-241. doi: 10.1007/s12272-020-01220-7.
doi: 10.1007/s12272-020-01220-7 pmid: 31989480 |
[26] |
Xue L, Xie K, Wu L, et al. A novel peptide relieves endothelial cell dysfunction in preeclampsia by regulating the PI3K/mTOR/HIF1α pathway[J]. Int J Mol Med, 2021, 47(1):276-288. doi: 10.3892/ijmm.2020.4793.
doi: 10.3892/ijmm.2020.4793 pmid: 33236147 |
[27] |
Zhang X, Li Q, Jiang W, et al. LAMA 5 promotes human umbilical vein endothelial cells migration, proliferation, and angiogenesis and is decreased in preeclampsia[J]. J Matern Fetal Neonatal Med, 2020, 33(7):1114-1124. doi: 10.1080/14767058.2018.1514597.
doi: 10.1080/14767058.2018.1514597 pmid: 30200802 |
[28] |
Yuan Y, Shan N, Tan B, et al. SRC-3 Plays a Critical Role in Human Umbilical Vein Endothelial Cells by Regulating the PI3K/Akt/mTOR Pathway in Preeclampsia[J]. Reprod Sci, 2018, 25(5):748-758. doi: 10.1177/1933719117725818.
doi: 10.1177/1933719117725818 pmid: 28826365 |
[29] |
Gui S, Zhou S, Liu M, et al. Elevated Levels of Soluble Axl (sAxl) Regulates Key Angiogenic Molecules to Induce Placental Endothelial Dysfunction and a Preeclampsia-Like Phenotype[J]. Front Physiol, 2021, 12:619137. doi: 10.3389/fphys.2021.619137.
doi: 10.3389/fphys.2021.619137 |
[30] |
van Niekerk G, Christowitz C, Engelbrecht AM. Insulin-mediated immune dysfunction in the development of preeclampsia[J]. J Mol Med (Berl), 2021, 99(7):889-897. doi: 10.1007/s00109-021-02068-0.
doi: 10.1007/s00109-021-02068-0 pmid: 33768298 |
[31] |
Rademacher TW, Gumaa K, Scioscia M. Preeclampsia, insulin signalling and immunological dysfunction: a fetal, maternal or placental disorder?[J]. J Reprod Immunol, 2007, 76(1/2):78-84. doi: 10.1016/j.jri.2007.03.019.
doi: 10.1016/j.jri.2007.03.019 |
[32] |
Hanson MA, Bardsley A, De-Regil LM, et al. The International Federation of Gynecology and Obstetrics (FIGO) recommendations on adolescent, preconception, and maternal nutrition: "Think Nutrition First"[J]. Int J Gynaecol Obstet, 2015, 131(Suppl 4):S213-S253. doi: 10.1016/S0020-7292(15)30034-5.
doi: 10.1016/S0020-7292(15)30034-5 |
[33] |
Suvakov S, Bonner E, Nikolic V, et al. Overlapping pathogenic signalling pathways and biomarkers in preeclampsia and cardiovascular disease[J]. Pregnancy Hypertens, 2020, 20:131-136. doi: 10.1016/j.preghy.2020.03.011.
doi: S2210-7789(20)30038-6 pmid: 32299060 |
[34] |
Han L, Luo QQ, Peng MG, et al. miR-483 is downregulated in pre-eclampsia via targeting insulin-like growth factor 1 (IGF1) and regulates the PI3K/Akt/mTOR pathway of endothelial progenitor cells[J]. J Obstet Gynaecol Res, 2021, 47(1):63-72. doi: 10.1111/jog.14412.
doi: 10.1111/jog.14412 |
[35] |
Li G, Lin L, Wang YL, et al. 1,25(OH)2D3 Protects Trophoblasts Against Insulin Resistance and Inflammation Via Suppressing mTOR Signaling[J]. Reprod Sci, 2019, 26(2):223-232. doi: 10.1177/1933719118766253.
doi: 10.1177/1933719118766253 pmid: 29575997 |
[36] |
Wara AK, Wang S, Wu C, et al. KLF 10 Deficiency in CD4(+) T Cells Triggers Obesity, Insulin Resistance, and Fatty Liver[J]. Cell Rep, 2020, 33(13):108550. doi: 10.1016/j.celrep.2020.108550.
doi: 10.1016/j.celrep.2020.108550 |
[37] |
Wang X, Zhong L, Liu Q, et al. Activation of Gonadotropin-releasing Hormone Receptor Impedes the Immunosuppressive Activity of Decidual Regulatory T Cells via Deactivating the Mechanistic Target of Rapamycin Signaling[J]. Immunol Invest, 2022, 51(5):1330-1346. doi: 10.1080/08820139.2021.1937208.
doi: 10.1080/08820139.2021.1937208 |
[1] | 马玲, 李亚西, 赵敏, 王静, 李红丽. 细胞凋亡与不良妊娠结局关系的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 121-126. |
[2] | 侯春艳, 杜秀萍, 王红红, 侯岳洋. 高迁移率族蛋白A2在胎儿生长受限发病机制中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 127-131. |
[3] | 杨洋, 马媛, 陈宥艺, 赵静, 马文娟. 重度子痫前期患者血清外泌体对人正常蜕膜免疫细胞功能的影响[J]. 国际妇产科学杂志, 2025, 52(2): 143-152. |
[4] | 王晶, 王永红. 蜕膜自然杀伤细胞在子痫前期发病机制中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 88-93. |
[5] | 张雯, 刘慧强. SOCS1与外泌体微小RNA在子痫前期发病机制中的作用[J]. 国际妇产科学杂志, 2025, 52(1): 94-98. |
[6] | 王一丹, 王永红. 转化生长因子-β超家族在子痫前期发病机制中的作用[J]. 国际妇产科学杂志, 2025, 52(1): 99-104. |
[7] | 樊博扬, 胡丽燕. 双胎妊娠合并子痫前期发病机制及预测方法研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 611-615. |
[8] | 陈志茹, 戴岚. 放化疗诱导肿瘤细胞死亡与肿瘤再增殖的研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 648-653. |
[9] | 高艺苇, 罗伟, 吴琼, 穆玉兰. 铁死亡与早发性卵巢功能不全的关系[J]. 国际妇产科学杂志, 2024, 51(5): 497-502. |
[10] | 邓玲玲, 伍绍文, 张为远. 小剂量阿司匹林在子痫前期预防中的研究进展[J]. 国际妇产科学杂志, 2024, 51(5): 515-518. |
[11] | 张琦, 王新, 任毅, 刘超, 高慧婕. SLRPs在胎盘发育及妊娠相关疾病中的研究进展[J]. 国际妇产科学杂志, 2024, 51(5): 525-530. |
[12] | 祝淡抹, 刘琴. 早产剖宫产后发现绒毛膜癌一例[J]. 国际妇产科学杂志, 2024, 51(5): 546-548. |
[13] | 郭希, 魏佳, 杨永秀. 导致子宫内膜疾病的激素通路及调节因素[J]. 国际妇产科学杂志, 2024, 51(4): 395-400. |
[14] | 任毅, 胡玉莲, 王新, 张琦, 刘超, 高慧婕. 子痫前期的中药临床应用与现代药理学进展[J]. 国际妇产科学杂志, 2024, 51(4): 442-447. |
[15] | 赵丽霞, 王小青. 硫酸镁在子痫前期治疗中的争议及其不良反应[J]. 国际妇产科学杂志, 2024, 51(4): 448-452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||