[1] |
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1):17-48. doi: 10.3322/caac.21763.
|
[2] |
郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3):221-231. doi: 10.3760/cma.j.cn112152-20240119-00035.
|
[3] |
Chliara MA, Elezoglou S, Zergioti I. Bioprinting on Organ-on-Chip: Development and Applications[J]. Biosensors(Basel), 2022, 12(12):1135. doi: 10.3390/bios12121135.
|
[4] |
Ren K, Zhou J, Wu H. Materials for microfluidic chip fabrication[J]. Acc Chem Res, 2013, 46(11):2396-2406. doi: 10.1021/ar300314s.
|
[5] |
Ko J, Song J, Lee Y, et al. Understanding organotropism in cancer metastasis using microphysiological systems[J]. Lab Chip, 2024, 24(6):1542-1556. doi: 10.1039/d3lc00889d.
pmid: 38192269
|
[6] |
Huang D, Man J, Jiang D, et al. Inertial microfluidics: Recent advances[J]. Electrophoresis, 2020, 41(24):2166-2187. doi: 10.1002/elps.202000134.
|
[7] |
孙漩嵘, 徐卓敏, 蔡悦. 微流控技术在纳米药物载体制备中的应用[J]. 中国药学杂志, 2020, 55(8):573-579. doi: 10.11669/cpj.2020.08.001.
|
[8] |
Ibrahim LI, Hajal C, Offeddu GS, et al. Omentum-on-a-chip: A multicellular, vascularized microfluidic model of the human peritoneum for the study of ovarian cancer metastases[J]. Biomaterials, 2022,288:121728. doi: 10.1016/j.biomaterials.2022.121728.
|
[9] |
Aleman J, Skardal A. A multi-site metastasis-on-a-chip microphysiological system for assessing metastatic preference of cancer cells[J]. Biotechnol Bioeng, 2019, 116(4):936-944. doi: 10.1002/bit.26871.
pmid: 30450540
|
[10] |
Na JT, Hu SY, Xue CD, et al. A microfluidic system for precisely reproducing physiological blood pressure and wall shear stress to endothelial cells[J]. Analyst, 2021, 146(19):5913-5922. doi: 10.1039/d1an01049b.
|
[11] |
Mi F, Hu C, Wang Y, et al. Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review[J]. Anal Bioanal Chem, 2022, 414(9):2883-2902. doi: 10.1007/s00216-021-03872-w.
|
[12] |
Baka Z, Stiefel M, Figarol A, et al. Cancer-on-chip technology: current applications in major cancer types, challenges and future prospects[J]. Prog Biomed Eng, 2022, 4(3):032001. doi:10.1088/2516-1091/ac8259.
|
[13] |
Davoodi E, Sarikhani E, Montazerian H, et al. Extrusion and Microfluidic-based Bioprinting to Fabricate Biomimetic Tissues and Organs[J]. Adv Mater Technol, 2020, 5(8):1901044. doi: 10.1002/admt.201901044.
|
[14] |
Li Z, Xu X, Wang D, et al. Recent advancements in nucleic acid detection with microfluidic chip for molecular diagnostics[J]. Trends Analyt Chem, 2023,158:116871. doi: 10.1016/j.trac.2022.116871.
|
[15] |
Li SS, Ip CK, Tang MY, et al. Modeling Ovarian Cancer Multicellular Spheroid Behavior in a Dynamic 3D Peritoneal Microdevice[J]. J Vis Exp, 2017(120):55337. doi: 10.3791/55337.
|
[16] |
Saha B, Mathur T, Tronolone JJ, et al. Human tumor microenvironment chip evaluates the consequences of platelet extravasation and combinatorial antitumor-antiplatelet therapy in ovarian cancer[J]. Sci Adv, 2021, 7(30):eabg5283. doi: 10.1126/sciadv.abg5283.
|
[17] |
Surendran V, Rutledge D, Colmon R, et al. A novel tumor-immune microenvironment (TIME)-on-Chip mimics three dimensional neutrophil-tumor dynamics and neutrophil extracellular traps (NETs)-mediated collective tumor invasion[J]. Biofabrication, 2021, 13(3):10.1088/1758-5090/abe1cf. doi: 10.1088/1758-5090/abe1cf.
|
[18] |
Scott AL, Jazwinska DE, Kulawiec DG, et al. Paracrine Ovarian Cancer Cell-Derived CSF1 Signaling Regulates Macrophage Migration Dynamics in a 3D Microfluidic Model that Recapitulates In Vivo Infiltration Patterns in Patient-Derived Xenografts[J]. Adv Healthc Mater,2024 May 28:e2401719. doi: 10.1002/adhm.202401719.
|
[19] |
Wimalachandra DC, Li Y, Liu J, et al. Microfluidic-Based Immunomodulation of Immune Cells Using Upconversion Nanoparticles in Simulated Blood Vessel-Tumor System[J]. ACS Appl Mater Interfaces, 2019, 11(41):37513-37523. doi: 10.1021/acsami.9b15178.
|
[20] |
Libbrecht S, Vankerckhoven A, de Wijs K, et al. A Microfluidics Approach for Ovarian Cancer Immune Monitoring in an Outpatient Setting[J]. Cells, 2023, 13(1):7. doi: 10.3390/cells13010007.
|
[21] |
Ip CK, Li SS, Tang MY, et al. Stemness and chemoresistance in epithelial ovarian carcinoma cells under shear stress[J]. Sci Rep, 2016,6:26788. doi: 10.1038/srep26788.
|
[22] |
Hassan AA, Artemenko M, Tang M, et al. Ascitic fluid shear stress in concert with hepatocyte growth factor drive stemness and chemoresistance of ovarian cancer cells via the c-Met-PI3K/Akt-miR-199a-3p signaling pathway[J]. Cell Death Dis, 2022, 13(6):537. doi: 10.1038/s41419-022-04976-6.
pmid: 35676254
|
[23] |
Saadati A, Soodabeh H, Fanaz B, et al. A novel biosensor for the monitoring of ovarian cancer tumor protein CA 125 in untreated human plasma samples using a novel nano-ink: a new platform for efficient diagnosis of cancer using paper based microfluidic technology[J]. Anal Methods, 2020, 12:1639-1649. doi:10.1039/d0ay00299b.
|
[24] |
Wu Y, Wang C, Wang P, et al. A high-performance microfluidic detection platform to conduct a novel multiple-biomarker panel for ovarian cancer screening[J]. RSC Adv, 2021, 11(14):8124-8133. doi: 10.1039/d0ra10200h.
pmid: 35423342
|
[25] |
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977. doi: 10.1126/science.aau6977.
|
[26] |
Shi J. Considering Exosomal miR-21 as a Biomarker for Cancer[J]. J Clin Med, 2016, 5(4):42. doi: 10.3390/jcm5040042.
|
[27] |
Sung CY, Huang CC, Chen YS, et al. Isolation and quantification of extracellular vesicle-encapsulated microRNA on an integrated microfluidic platform[J]. Lab Chip, 2021, 21(23):4660-4671. doi: 10.1039/d1lc00663k.
|
[28] |
Zhang P, Zhou X, He M, et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip[J]. Nat Biomed Eng, 2019, 3(6):438-451. doi: 10.1038/s41551-019-0356-9.
pmid: 31123323
|
[29] |
Zhao Z, Yang Y, Zeng Y, et al. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis[J]. Lab Chip, 2016, 16(3):489-496. doi: 10.1039/c5lc01117e.
pmid: 26645590
|
[30] |
Kim H, Lim M, Kim JY, et al. Circulating Tumor Cells Enumerated by a Centrifugal Microfluidic Device as a Predictive Marker for Monitoring Ovarian Cancer Treatment: A Pilot Study[J]. Diagnostics(Basel), 2020, 10(4):249. doi: 10.3390/diagnostics10040249.
|
[31] |
Jou HJ, Chou LY, Chang WC, et al. An Automatic Platform Based on Nanostructured Microfluidic Chip for Isolating and Identification of Circulating Tumor Cells[J]. Micromachines(Basel), 2021, 12(5):473. doi: 10.3390/mi12050473.
|
[32] |
Wang HF, Liu Y, Wang T, et al. Tumor-Microenvironment-on-a-Chip for Evaluating Nanoparticle-Loaded Macrophages for Drug Delivery[J]. ACS Biomater Sci Eng, 2020, 6(9):5040-5050. doi: 10.1021/acsbiomaterials.0c00650.
|
[33] |
Arellano JA, Howell TA, Gammon J, et al. Use of a highly parallel microfluidic flow cell array to determine therapeutic drug dose response curves[J]. Biomed Microdevices, 2017, 19(2):25. doi: 10.1007/s10544-017-0166-3.
pmid: 28378146
|
[34] |
Dadgar N, Gonzalez-Suarez AM, Fattahi P, et al. A microfluidic platform for cultivating ovarian cancer spheroids and testing their responses to chemotherapies[J]. Microsyst Nanoeng, 2020,6:93. doi: 10.1038/s41378-020-00201-6.
|
[35] |
VandenHeuvel SN, Chau E, Mohapatra A, et al. Macrophage Checkpoint Nanoimmunotherapy Has the Potential to Reduce Malignant Progression in Bioengineered In Vitro Models of Ovarian Cancer[J]. ACS Appl Bio Mater,2024 Apr 1. doi: 10.1021/acsabm.4c00076.
|
[36] |
Buckley M, Kramer M, Johnson B, et al. Mechanical activation and expression of HSP27 in epithelial ovarian cancer[J]. Sci Rep, 2024, 14(1):2856. doi: 10.1038/s41598-024-52992-7.
|
[37] |
Simeone K, Guay-Lord R, Lateef MA, et al. Paraffin-embedding lithography and micro-dissected tissue micro-arrays: tools for biological and pharmacological analysis of ex vivo solid tumors[J]. Lab Chip, 2019, 19(4):693-705. doi: 10.1039/c8lc00982a.
pmid: 30671574
|
[38] |
Xin L, Xiao W, Che L, et al. Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning[J]. ACS Omega, 2021, 6(46):31046-31057. doi: 10.1021/acsomega.1c04204.
pmid: 34841147
|