国际妇产科学杂志 ›› 2024, Vol. 51 ›› Issue (5): 566-571.doi: 10.12280/gjfckx.20240456
收稿日期:
2024-05-17
出版日期:
2024-10-15
发布日期:
2024-10-17
通讯作者:
刘畅,E-mail:作者简介:
△审校者
BAI Yao-jun, HU Xiao-hong, LI Hong-li, LIU Chang△()
Received:
2024-05-17
Published:
2024-10-15
Online:
2024-10-17
Contact:
LIU Chang, E-mail: 摘要:
妇科肿瘤是女性死亡的重要原因之一,尽管经过规范治疗部分患者的病情可以得到改善,但仍有很大一部分患者病情恶化,预后不佳。早期诊断及治疗是改善妇科肿瘤预后、减轻疾病负担的重要方法,因此需寻找更有效的治疗靶点。淋巴细胞活化基因-3(lymphocyte activation gene-3,LAG-3)是一个新兴的免疫检查点分子,高表达于多种类型的肿瘤浸润淋巴细胞表面,通过抑制免疫细胞功能参与免疫抑制并造成肿瘤免疫逃逸。近年研究发现,LAG-3在妇科肿瘤中高表达,与肿瘤的发生发展密切相关,有望成为妇科肿瘤免疫治疗的新靶点。阐述LAG-3的结构及功能,并就LAG-3与三大妇科肿瘤的相关性研究进展进行综述,以期为妇科肿瘤的后续治疗研究提供新的思路。
白耀俊, 胡晓红, 李红丽, 刘畅. 淋巴细胞活化基因-3在妇科肿瘤中的研究进展[J]. 国际妇产科学杂志, 2024, 51(5): 566-571.
BAI Yao-jun, HU Xiao-hong, LI Hong-li, LIU Chang. Research Progress on Lymphocyte Activation Gene-3 in Gynecological Tumors[J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 566-571.
药物名称 | 药物类型 | 组合剂 | 阶段 | 临床试验编号 | 状态 | 研究结果 |
---|---|---|---|---|---|---|
Relatlimab(BMS986016) | 抗LAG-3 | Ipilimumab, Cyclophosphamid, Fludarabine Phosphate, Tumor Infiltrating Lymphocytes infusion, Nivolumab | Ⅰ,Ⅱ | NCT04611126 | 完成(2024-07-02) | 尚未提交 |
Tebotelimab(MGD013) | 抗PD-1和抗LAG-3 | Margetuximab(抗HER2) | Ⅰ | NCT03219268 | 完成(2023-02-08) | 尚未提交 |
INCAGN02385 | 抗LAG-3 | - | Ⅰ | NCT03538028 | 完成(2020-10-07) | 尚未提交 |
Relatlimab(BMS986016) | 抗LAG-3 | Adavosertib, Afatinib, Dimaleate, Nivolumab, Osimertinib, Palbociclib, Pertuzumab, PI3K-beta, FGFR Inhibitor AZD4547 | Ⅱ | NCT02465060 | 进行(估计2025-12) | 尚未提交 |
XmAb22841 | 抗CTLA-4和抗LAG-3 | Pembrolizumab(抗PD-1) | Ⅰ | NCT03849469 | 完成(2023-02-16) | 尚未提交 |
LAG-525 | 抗LAG-3 | PDR001型(抗PD-1) | Ⅱ | NCT03365791 | 完成(2020-09-17) | 已公布 |
BMS986016 | 抗LAG-3 | 抗PD-1 | Ⅰ | NCT01968109 | 招募 | 尚未提交 |
表1 抗LAG-3抗体治疗卵巢癌的临床试验
药物名称 | 药物类型 | 组合剂 | 阶段 | 临床试验编号 | 状态 | 研究结果 |
---|---|---|---|---|---|---|
Relatlimab(BMS986016) | 抗LAG-3 | Ipilimumab, Cyclophosphamid, Fludarabine Phosphate, Tumor Infiltrating Lymphocytes infusion, Nivolumab | Ⅰ,Ⅱ | NCT04611126 | 完成(2024-07-02) | 尚未提交 |
Tebotelimab(MGD013) | 抗PD-1和抗LAG-3 | Margetuximab(抗HER2) | Ⅰ | NCT03219268 | 完成(2023-02-08) | 尚未提交 |
INCAGN02385 | 抗LAG-3 | - | Ⅰ | NCT03538028 | 完成(2020-10-07) | 尚未提交 |
Relatlimab(BMS986016) | 抗LAG-3 | Adavosertib, Afatinib, Dimaleate, Nivolumab, Osimertinib, Palbociclib, Pertuzumab, PI3K-beta, FGFR Inhibitor AZD4547 | Ⅱ | NCT02465060 | 进行(估计2025-12) | 尚未提交 |
XmAb22841 | 抗CTLA-4和抗LAG-3 | Pembrolizumab(抗PD-1) | Ⅰ | NCT03849469 | 完成(2023-02-16) | 尚未提交 |
LAG-525 | 抗LAG-3 | PDR001型(抗PD-1) | Ⅱ | NCT03365791 | 完成(2020-09-17) | 已公布 |
BMS986016 | 抗LAG-3 | 抗PD-1 | Ⅰ | NCT01968109 | 招募 | 尚未提交 |
药物名称 | 药物类型 | 联合 | 阶段 | 临床试验编号 | 状态 | 研究结果 |
---|---|---|---|---|---|---|
Tebotelimab(MGD013) | 抗PD-1和抗LAG-3 | Margetuximab(抗HER2) | Ⅰ | NCT03219268 | 完成(2023-02-08) | 尚未提交 |
XmAb22841 | 抗CTLA-4和抗LAG-3 | Pembrolizumab(抗PD-1) | Ⅰ | NCT03849469 | 完成(2023-02-16) | 尚未提交 |
Relatlimab | 抗LAG-3 | 抗PD-1 | Ⅰ,Ⅱ | NCT02488759 | 招募 | - |
INCAGN02385 | 抗LAG-3 | - | Ⅰ | NCT03538028 | 完成(2020-10-07) | 尚未提交 |
INCAGN02385 | 抗LAG-3 | 抗PD-1 | Ⅰ,Ⅱ | NCT01968109 | 招募 | - |
表2 抗LAG-3抗体治疗宫颈癌的临床试验
药物名称 | 药物类型 | 联合 | 阶段 | 临床试验编号 | 状态 | 研究结果 |
---|---|---|---|---|---|---|
Tebotelimab(MGD013) | 抗PD-1和抗LAG-3 | Margetuximab(抗HER2) | Ⅰ | NCT03219268 | 完成(2023-02-08) | 尚未提交 |
XmAb22841 | 抗CTLA-4和抗LAG-3 | Pembrolizumab(抗PD-1) | Ⅰ | NCT03849469 | 完成(2023-02-16) | 尚未提交 |
Relatlimab | 抗LAG-3 | 抗PD-1 | Ⅰ,Ⅱ | NCT02488759 | 招募 | - |
INCAGN02385 | 抗LAG-3 | - | Ⅰ | NCT03538028 | 完成(2020-10-07) | 尚未提交 |
INCAGN02385 | 抗LAG-3 | 抗PD-1 | Ⅰ,Ⅱ | NCT01968109 | 招募 | - |
[1] | Abi-Aad SJ, Zouein J, Chartouni A, et al. Simultaneous inhibition of PD-1 and LAG-3: the future of immunotherapy?[J]. Immunotherapy, 2023, 15(8):611-618. doi: 10.2217/imt-2022-0185. |
[2] | 李云鹏, 曹英, 陈伟, 等. LAG-3的生物学特点及其在肿瘤免疫中的研究进展[J]. 现代免疫学, 2024, 44(1):55-60. |
[3] | Yu L, Sun M, Zhang Q, et al. Harnessing the immune system by targeting immune checkpoints: Providing new hope for Oncotherapy[J]. Front Immunol, 2022,13:982026. doi: 10.3389/fimmu.2022.982026. |
[4] | Lythgoe MP, Liu D, Annels NE, et al. Gene of the month: lymphocyte-activation gene 3 (LAG-3)[J]. J Clin Pathol, 2021, 74(9):543-547. doi: 10.1136/jclinpath-2021-207517. |
[5] |
Wang M, Du Q, Jin J, et al. LAG3 and its emerging role in cancer immunotherapy[J]. Clin Transl Med, 2021, 11(3):e365. doi: 10.1002/ctm2.365.
pmid: 33784013 |
[6] | Alqurashi YE. Lymphocyte-activation gene 3 (LAG-3) as a promising immune checkpoint in cancer immunotherapy: From biology to the clinic[J]. Pathol Res Pract, 2024,254:155124. doi: 10.1016/j.prp.2024.155124. |
[7] | Huo JL, Wang YT, Fu WJ, et al. The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application[J]. Front Immunol, 2022,13:956090. doi: 10.3389/fimmu.2022.956090. |
[8] | Qian W, Zhao M, Wang R, et al. Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target[J]. J Hematol Oncol, 2021, 14(1):147. doi: 10.1186/s13045-021-01161-8. |
[9] | Aigner-Radakovics K, De Sousa Linhares A, Salzer B, et al. The ligand-dependent suppression of TCR signaling by the immune checkpoint receptor LAG3 depends on the cytoplasmic RRFSALE motif[J]. Sci Signal, 2023, 16(805):eadg2610. doi: 10.1126/scisignal.adg2610. |
[10] | Ibrahim R, Saleh K, Chahine C, et al. LAG-3 Inhibitors: Novel Immune Checkpoint Inhibitors Changing the Landscape of Immunotherapy[J]. Biomedicines, 2023, 11(7):1878. doi: 10.3390/biomedicines11071878. |
[11] | Chocarro L, Blanco E, Zuazo M, et al. Understanding LAG-3 Signaling[J]. Int J Mol Sci, 2021, 22(10):5282. doi: 10.3390/ijms22105282. |
[12] |
Joller N, Anderson AC, Kuchroo VK. LAG-3, TIM-3, and TIGIT: Distinct functions in immune regulation[J]. Immunity, 2024, 57(2):206-222. doi: 10.1016/j.immuni.2024.01.010.
pmid: 38354701 |
[13] | Gertel S, Polachek A, Elkayam O, et al. Lymphocyte activation gene-3 (LAG-3) regulatory T cells: An evolving biomarker for treatment response in autoimmune diseases[J]. Autoimmun Rev, 2022, 21(6):103085. doi: 10.1016/j.autrev.2022.103085. |
[14] |
Annunziato F, Manetti R, Cosmi L, et al. Opposite role for interleukin-4 and interferon-gamma on CD30 and lymphocyte activation gene-3 (LAG-3) expression by activated naive T cells[J]. Eur J Immunol, 1997, 27(9):2239-2244. doi: 10.1002/eji.1830270918.
pmid: 9341765 |
[15] | Beumer-Chuwonpad A, Taggenbrock R, Ngo TA, et al. The Potential of Tissue-Resident Memory T Cells for Adoptive Immunotherapy against Cancer[J]. Cells, 2021, 10(9):2234. doi: 10.3390/cells10092234. |
[16] | Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in ovarian cancer therapy[J]. Nat Cancer, 2023, 4(9):1239-1257. doi: 10.1038/s43018-023-00617-9. |
[17] | Habel A, Weili X, Hadj Ahmed M, et al. Immune checkpoints as potential theragnostic biomarkers for epithelial ovarian cancer[J]. Int J Biol Markers, 2023, 38(3/4):203-213. doi: 10.1177/03936155231186163. |
[18] | Kozłowski M, Borzyszkowska D, Cymbaluk-Płoska A. The Role of TIM-3 and LAG-3 in the Microenvironment and Immunotherapy of Ovarian Cancer[J]. Biomedicines, 2022, 10(11):2826. doi: 10.3390/biomedicines10112826. |
[19] |
Tu L, Guan R, Yang H, et al. Assessment of the expression of the immune checkpoint molecules PD-1, CTLA4, TIM-3 and LAG-3 across different cancers in relation to treatment response, tumor-infiltrating immune cells and survival[J]. Int J Cancer, 2020, 147(2):423-439. doi: 10.1002/ijc.32785.
pmid: 31721169 |
[20] | 朱元媛, 闫洪超, 刘永利, 等. BTLA、LAG3和TIM3在上皮性卵巢癌组织中的表达意义[J]. 实用医学杂志, 2019, 35(5):698-702. doi: 10.3969/j.issn.1006-5725.2019.05.005. |
[21] |
Eurich K, De La Cruz P, Laguna A, et al. Multiplex serum immune profiling reveals circulating LAG-3 is associated with improved patient survival in high grade serous ovarian cancer[J]. Gynecol Oncol, 2023, 174:200-207. doi: 10.1016/j.ygyno.2023.05.015.
pmid: 37224792 |
[22] |
Zaitsu S, Yano M, Adachi S, et al. Lymphocyte-activation gene 3 protein expression in tumor-infiltrating lymphocytes is associated with a poor prognosis of ovarian clear cell carcinoma[J]. J Ovarian Res, 2023, 16(1):93. doi: 10.1186/s13048-023-01179-1.
pmid: 37179337 |
[23] |
Crosbie EJ, Kitson SJ, McAlpine JN, et al. Endometrial cancer[J]. Lancet, 2022, 399(10333):1412-1428. doi: 10.1016/S0140-6736(22)00323-3.
pmid: 35397864 |
[24] |
Gu B, Shang X, Yan M, et al. Variations in incidence and mortality rates of endometrial cancer at the global, regional, and national levels, 1990-2019[J]. Gynecol Oncol, 2021, 161(2):573-580. doi: 10.1016/j.ygyno.2021.01.036.
pmid: 33551200 |
[25] | Zhang C, Wang M, Wu Y. Features of the immunosuppressive tumor microenvironment in endometrial cancer based on molecular subtype[J]. Front Oncol, 2023,13:1278863. doi: 10.3389/fonc.2023.1278863. |
[26] | Hong JH, Cho HW, Ouh YT, et al. Lymphocyte activation gene (LAG)-3 is a potential immunotherapeutic target for microsatellite stable, programmed death-ligand 1 (PD-L1)-positive endometrioid endometrial cancer[J]. J Gynecol Oncol, 2023, 34(2):e18. doi: 10.3802/jgo.2023.34.e18. |
[27] |
Friedman LA, Ring KL, Mills AM. LAG-3 and GAL-3 in Endometrial Carcinoma: Emerging Candidates for Immunotherapy[J]. Int J Gynecol Pathol, 2020, 39(3):203-212. doi: 10.1097/PGP.0000000000000608.
pmid: 32267656 |
[28] | 窦倩茹, 范文秀, 王林芳, 等. 子宫内膜癌组织中LAG-3、TIM-3、BTLA的表达情况及意义[J]. 现代预防医学, 2020, 47(2):317-321. |
[29] | 郭立文, 曹罗元, 陈惠华, 等. 组织内 PGK1、SOCS1、LAG-3 水平与子宫内膜癌病理特征的相关性分析[J]. 临床和实验医学杂志, 2022, 21(24):2624-2628. doi: 10.3969/j.issn.1671-4695.2022.24.013. |
[30] | 张瑞红, 张海涛. 可溶性T细胞免疫球蛋白黏蛋白3、淋巴细胞激活基因3表达水平与子宫内膜癌疾病转归的相关性[J]. 医学理论与实践, 2023, 36(11):1934-1936. doi: 10.19381/j.issn.1001-7585.2023.11.052. |
[31] | Zhang Y, Yang R, Xu C, et al. Analysis of the immune checkpoint lymphocyte activation gene-3 (LAG-3) in endometrial cancer: An emerging target for immunotherapy[J]. Pathol Res Pract, 2022,236:153990. doi: 10.1016/j.prp.2022.153990. |
[32] | Schubert M, Bauerschlag DO, Muallem MZ, et al. Challenges in the Diagnosis and Individualized Treatment of Cervical Cancer[J]. Medicina(Kaunas), 2023, 59(5):925. doi: 10.3390/medicina59050925. |
[33] | Grau JF, Farinas-Madrid L, Garcia-Duran C, et al. Advances in immunotherapy in cervical cancer[J]. Int J Gynecol Cancer, 2023, 33(3):403-413. doi: 10.1136/ijgc-2022-003758. |
[34] | Li Y, Shen F, Tan Q, et al. Research Progress of Immuno-Inhibitory Receptors in Gynecological Cervical Cancer[J]. Technol Cancer Res Treat, 2023,22:15330338231208846. doi: 10.1177/15330338231208846. |
[35] | Hung AL, Maxwell R, Theodros D, et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM[J]. Oncoimmunology, 2018, 7(8):e1466769. doi: 10.1080/2162402X.2018.1466769. |
[36] | Qi Y, Chen L, Liu Q, et al. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy[J]. Front Immunol, 2020, 11:563258. doi: 10.3389/fimmu.2020.563258. |
[37] | Lichtenegger FS, Rothe M, Schnorfeil FM, et al. Targeting LAG-3 and PD-1 to Enhance T Cell Activation by Antigen-Presenting Cells[J]. Front Immunol, 2018,9:385. doi: 10.3389/fimmu.2018.00385. |
[38] | 李玉英, 赵丽, 王蕾, 等. 子宫颈鳞状细胞癌组织TIM-3、LAG-3、TIGIT的表达变化及其意义[J]. 山东医药, 2022, 62(18):12-16. doi: 10.3969/j.issn.1002-266X.2022.18.003. |
[39] | Li Y, Wang W, Tian J, et al. Clinical Significance of Soluble LAG-3 (sLAG-3) in Patients With Cervical Cancer Determined via Enzyme-Linked Immunosorbent Assay With Monoclonal Antibodies[J]. Technol Cancer Res Treat, 2023,22:15330338231202650. doi: 10.1177/15330338231202650. |
[40] |
Heeren AM, Rotman J, Stam A, et al. Efficacy of PD-1 blockade in cervical cancer is related to a CD8+FoxP3+CD25+ T-cell subset with operational effector functions despite high immune checkpoint levels[J]. J Immunother Cancer, 2019, 7(1):43. doi: 10.1186/s40425-019-0526-z.
pmid: 30755279 |
[41] | Tawbi HA, Schadendorf D, Lipson EJ, et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma[J]. N Engl J Med, 2022, 386(1):24-34. doi: 10.1056/NEJMoa2109970. |
[42] | Long GV, Stephen Hodi F, Lipson EJ, et al. Overall Survival and Response with Nivolumab and Relatlimab in Advanced Melanoma[J]. NEJM Evid, 2023, 2(4):EVIDoa2200239. doi: 10.1056/EVIDoa2200239. |
[43] | Chocarro L, Blanco E, Arasanz H, et al. Clinical landscape of LAG-3-targeted therapy[J]. Immunooncol Technol, 2022,14:100079. doi: 10.1016/j.iotech.2022.100079. |
[1] | 张昊晟, 魏芳. Nectin-4在妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 165-168. |
[2] | 王佳丽, 马国霞, 魏佳, 刘思敏, 杨永秀. 生殖系统T淋巴母细胞淋巴瘤一例[J]. 国际妇产科学杂志, 2025, 52(2): 195-199. |
[3] | 袁海宁, 牟珍妮, 张江琳, 李恒兵, 张云洁, 孙振高. 高龄卵母细胞质量与端粒酶的关联及机制[J]. 国际妇产科学杂志, 2025, 52(1): 57-60. |
[4] | 张野, 陈巧云, 赵佳怡, 陈璐, 刘建荣. 纳米微球在宫颈癌预防与治疗中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 8-12. |
[5] | 陈志茹, 戴岚. 放化疗诱导肿瘤细胞死亡与肿瘤再增殖的研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 648-653. |
[6] | 李丹宁, 汪希鹏. 单细胞测序技术解析上皮性卵巢癌免疫微环境的研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 654-658. |
[7] | 张建楠, 郭鑫, 郭楠, 宁文婷, 于宏鑫, 尚海霞. 微流控技术在卵巢癌疾病建模、药物评估、精准医疗中的应用[J]. 国际妇产科学杂志, 2024, 51(5): 560-565. |
[8] | 张静怡, 刘东哲, 陈秀慧. 外泌体在卵巢癌血管生成中的研究进展[J]. 国际妇产科学杂志, 2024, 51(4): 370-374. |
[9] | 杨祖娇, 宁显灵, 刘洲梅, 王文艳, 尹桥仙, 杨谢兰. 免疫检查点抑制剂相关严重贫血一例[J]. 国际妇产科学杂志, 2024, 51(4): 438-441. |
[10] | 吴晓莉, 刘开江. 子宫内膜癌TCGA分子分型与治疗新进展[J]. 国际妇产科学杂志, 2024, 51(3): 247-252. |
[11] | 张蓝月, 申复进. 过继性细胞免疫治疗在宫颈癌中的研究进展[J]. 国际妇产科学杂志, 2024, 51(3): 253-257. |
[12] | 石丽娟, 于晓川, 王化丽. 脂肪间充质干细胞外泌体在妇科疾病的应用及进展[J]. 国际妇产科学杂志, 2024, 51(3): 274-278. |
[13] | 郭世为, 孙静莉, 陈震宇, 刘森. 干细胞外泌体在妇科疾病中的临床应用[J]. 国际妇产科学杂志, 2024, 51(3): 279-283. |
[14] | 寿梦娜, 黄艺舟, 周坚红. 褪黑素与早发性卵巢功能不全关系的研究进展[J]. 国际妇产科学杂志, 2024, 51(2): 133-136. |
[15] | 李妮, 王榆平, 任娟娟, 李淑馨. 基于年龄-时期-队列模型分析1990—2019年中国妇科疾病负担趋势[J]. 国际妇产科学杂志, 2024, 51(2): 142-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||