| [1] |
Yang M, Wang M, Li N. Advances in pathogenesis of preeclampsia[J]. Arch Gynecol Obstet, 2024, 309(5):1815-1823. doi: 10.1007/s00404-024-07393-6.
|
| [2] |
Torres-Torres J, Espino-Y-Sosa S, Martinez-Portilla R, et al. A Narrative Review on the Pathophysiology of Preeclampsia[J]. Int J Mol Sci, 2024, 25(14):7569. doi: 10.3390/ijms25147569.
|
| [3] |
Chen Z, Gan J, Zhang M, et al. Ferroptosis and Its Emerging Role in Pre-Eclampsia[J]. Antioxidants(Basel), 2022, 11(7):1282. doi: 10.3390/antiox11071282.
|
| [4] |
Yang X, Wei J, Sun L, et al. Causal relationship between iron status and preeclampsia-eclampsia: a Mendelian randomization analysis[J]. Clin Exp Hypertens, 2024, 46(1):2321148. doi: 10.1080/10641963.2024.2321148.
|
| [5] |
Sangkhae V, Fisher AL, Wong S, et al. Effects of maternal iron status on placental and fetal iron homeostasis[J]. J Clin Invest, 2020, 130(2):625-640. doi: 10.1172/JCI127341.
pmid: 31661462
|
| [6] |
Ng SW, Norwitz SG, Norwitz ER. The Impact of Iron Overload and Ferroptosis on Reproductive Disorders in Humans: Implications for Preeclampsia[J]. Int J Mol Sci, 2019, 20(13):3283. doi: 10.3390/ijms20133283.
|
| [7] |
Shaji Geetha N, Bobby Z, Dorairajan G, et al. Increased hepcidin levels in preeclampsia: a protective mechanism against iron overload mediated oxidative stress?[J]. J Matern Fetal Neonatal Med, 2022, 35(4):636-641. doi: 10.1080/14767058.2020.1730322.
|
| [8] |
董捷, 颜建英, 张勤建. 铁与子痫前期发病的研究进展[J]. 中华围产医学杂志, 2019, 22(11):812-816. doi: 10.3760/cma.j.issn.1007-9408.2019.11.010.
|
| [9] |
褚慧娟. 子痫前期孕妇血清铁蛋白、胱抑素C水平与妊娠结局的相关性分析[J]. 临床研究, 2022, 30(10):99-103. doi: 10.12385/j.issn.2096-1278(2022)10-0099-05.
|
| [10] |
Zhang H, He Y, Wang JX, et al. miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia[J]. Redox Biol, 2020, 29:101402. doi: 10.1016/j.redox.2019.101402.
|
| [11] |
Kinshella MW, Omar S, Scherbinsky K, et al. Maternal nutritional risk factors for pre-eclampsia incidence: findings from a narrative scoping review[J]. Reprod Health, 2022, 19(1):188. doi: 10.1186/s12978-022-01485-9.
pmid: 36064716
|
| [12] |
Chen Y, Fang ZM, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways[J]. Cell Death Dis, 2023, 14(3):205. doi: 10.1038/s41419-023-05716-0.
pmid: 36944609
|
| [13] |
Izumi Y, Kataoka H, Koshiba A, et al. Hepcidin as a key regulator of iron homeostasis triggers inflammatory features in the normal endometrium[J]. Free Radic Biol Med, 2023, 209(Pt 2):191-201. doi: 10.1016/j.freeradbiomed.2023.10.402.
|
| [14] |
González-Fernández D, Nemeth E, Pons E, et al. Multiple Infections,Nutrient Deficiencies, and Inflammation as Determinants of Anemia and Iron Status during Pregnancy: The MINDI Cohort[J]. Nutrients, 2024, 16(11):1748. doi: 10.3390/nu16111748.
|
| [15] |
Puttaiah A, Kirthan J, Sadanandan DM, et al. Inflammatory markers and their association with preeclampsia among pregnant women: A systematic review and meta-analysis[J]. Clin Biochem, 2024, 129:110778. doi: 10.1016/j.clinbiochem.2024.110778.
|
| [16] |
王皓楠, 孟海霞. 血清铁状态与子痫前期的研究进展[J]. 现代妇产科进展, 2022, 31(10):783-785. doi: 10.13283/j.cnki.xdfckjz.2022.10.033.
|
| [17] |
熊姚西, 陈超, 刘金钰, 等. 铁死亡在妊娠相关疾病中的研究进展[J]. 中华围产医学杂志, 2023, 26(2):164-168. doi: 10.3760/cma.j.cn113903-20220513-00475.
|
| [18] |
Zaugg J, Solenthaler F, Albrecht C. Materno-fetal iron transfer and the emerging role of ferroptosis pathways[J]. Biochem Pharmacol, 2022, 202:115141. doi: 10.1016/j.bcp.2022.115141.
|
| [19] |
Jiang L, Yan J. The relationship between free fatty acids and mitochondrial oxidative stress damage to trophoblast cell in preeclampsia[J]. BMC Pregnancy Childbirth, 2022, 22(1):273. doi: 10.1186/s12884-022-04623-0.
|
| [20] |
Park C, Alahari S, Ausman J, et al. Placental Hypoxia-Induced Ferroptosis Drives Vascular Damage in Preeclampsia[J]. Circ Res, 2025, 136(4):361-378. doi: 10.1161/CIRCRESAHA.124.325119.
|
| [21] |
谢芳, 张晓燕, 苏敏, 等. 子痫前期不良妊娠结局的影响因素和风险预测模型建立与验证[J]. 重庆医科大学学报, 2022, 47(12):1400-1406. doi: 10.13406/j.cnki.cyxb.003141.
|
| [22] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072. doi: 10.1016/j.cell.2012.03.042.
pmid: 22632970
|
| [23] |
Liu M, Wu K, Wu Y. The emerging role of ferroptosis in female reproductive disorders[J]. Biomed Pharmacother, 2023, 166:115415. doi: 10.1016/j.biopha.2023.115415.
|
| [24] |
Shen X, Obore N, Wang Y, et al. The Role of Ferroptosis in Placental-Related Diseases[J]. Reprod Sci, 2023, 30(7):2079-2086. doi: 10.1007/s43032-023-01193-0.
pmid: 36930425
|
| [25] |
Wang Y, Zhang G, Gao Y, et al. METTL3 promotes trophoblast ferroptosis in preeclampsia by stabilizing the ACSL4 m6A modification[J]. Exp Cell Res, 2024, 437(1):113990. doi: 10.1016/j.yexcr.2024.113990.
|
| [26] |
Yang X, Ding Y, Sun L, et al. Ferritin light chain deficiency induced ferroptosis is involved in preeclampsia pathophysiology by disturbing uterine spiral artery remodelling[J]. Redox Biol, 2022, 58:102555. doi: 10.1016/j.redox.2022.102555.
|
| [27] |
Freire V, Melo AD, Santos HL, et al. Evaluation of oxidative stress markers in subtypes of preeclampsia: A systematic review and meta-analysis[J]. Placenta, 2023, 132:55-67. doi: 10.1016/j.placenta.2022.12.009.
pmid: 36669343
|
| [28] |
宋鹏书, 张奕梅, 彭振仁, 等. 氧化应激因子和铁死亡标志物在子痫前期孕妇中的表达情况及其临床意义[J]. 广西医学, 2023, 45(4):382-385. doi: 10.11675/j.issn.0253-4304.2023.04.02.
|
| [29] |
Liao T, Xu X, Ye X, et al. DJ-1 upregulates the Nrf2/GPX4 signal pathway to inhibit trophoblast ferroptosis in the pathogenesis of preeclampsia[J]. Sci Rep, 2022, 12(1):2934. doi: 10.1038/s41598-022-07065-y.
pmid: 35190654
|
| [30] |
Wang Y, Zhang L, Zhou X. Activation of Nrf2 signaling protects hypoxia-induced HTR-8/SVneo cells against ferroptosis[J]. J Obstet Gynaecol Res, 2021, 47(11):3797-3806. doi: 10.1111/jog.15009.
|
| [31] |
Zhang Y, Lu Y, Jin L. Iron Metabolism and Ferroptosis in Physiological and Pathological Pregnancy[J]. Int J Mol Sci, 2022, 23(16):9395. doi: 10.3390/ijms23169395.
|
| [32] |
Chen Y, Yi X, Huo B, et al. BRD4770 functions as a novel ferroptosis inhibitor to protect against aortic dissection[J]. Pharmacol Res, 2022, 177:106122. doi: 10.1016/j.phrs.2022.106122.
|
| [33] |
Rajamanickam K, Leela V, Suganya G, et al. Expression of iron regulatory proteins in full-term swine placenta[J]. Reprod Domest Anim, 2020, 55(8):931-942. doi: 10.1111/rda.13730.
|
| [34] |
Orecchioni M, Kobiyama K, Winkels H, et al. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production[J]. Science, 2022, 375(6577):214-221. doi: 10.1126/science.abg3067.
pmid: 35025664
|
| [35] |
Gupta U, Ghosh S, Wallace CT, et al. Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD[J]. Autophagy, 2023, 19(1):92-111. doi: 10.1080/15548627.2022.2062887.
|