| [1] |
Zhai F, Wang J, Yang W, et al. The E3 Ligases in Cervical Cancer and Endometrial Cancer[J]. Cancers(Basel), 2022, 14(21):5354. doi: 10.3390/cancers14215354.
|
| [2] |
Wang Y, Zeng X, Tan J, et al. Diabetes mellitus and endometrial carcinoma: Risk factors and etiological links[J]. Medicine(Baltimore), 2022, 101(34):e30299. doi: 10.1097/MD.0000000000030299.
|
| [3] |
Saed L, Varse F, Baradaran HR, et al. The effect of diabetes on the risk of endometrial Cancer: an updated a systematic review and meta-analysis[J]. BMC Cancer, 2019, 19(1):527. doi: 10.1186/s12885-019-5748-4.
pmid: 31151429
|
| [4] |
Yao H, Zhang A, Li D, et al. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis[J]. BMJ, 2024, 384:e076410. doi: 10.1136/bmj-2023-076410.
|
| [5] |
Gou Y, Schwartz MW. How should we think about the unprecedented weight loss efficacy of incretin-mimetic drugs?[J]. J Clin Invest, 2023, 133(19):e174597. doi: 10.1172/JCI174597.
|
| [6] |
Moore PW, Malone K, VanValkenburg D, et al. GLP-1 Agonists for Weight Loss: Pharmacology and Clinical Implications[J]. Adv Ther, 2023, 40(3):723-742. doi: 10.1007/s12325-022-02394-w.
|
| [7] |
Kopp KO, Glotfelty EJ, Li Y, et al. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment[J]. Pharmacol Res, 2022, 186:106550. doi: 10.1016/j.phrs.2022.106550.
|
| [8] |
Chen X, Zhao P, Wang W, et al. The Antidepressant Effects of GLP-1 Receptor Agonists: A Systematic Review and Meta-Analysis[J]. Am J Geriatr Psychiatry, 2024, 32(1):117-127. doi: 10.1016/j.jagp.2023.08.010.
|
| [9] |
Menghini R, Casagrande V, Rizza S, et al. GLP-1RAs and cardiovascular disease: is the endothelium a relevant platform?[J]. Acta Diabetol, 2023, 60(11):1441-1448. doi: 10.1007/s00592-023-02124-w.
pmid: 37401947
|
| [10] |
Wang L, Xu R, Kaelber DC, et al. Glucagon-Like Peptide 1 Receptor Agonists and 13 Obesity-Associated Cancers in Patients With Type 2 Diabetes[J]. JAMA Netw Open, 2024, 7(7):e2421305. doi: 10.1001/jamanetworkopen.2024.21305.
|
| [11] |
Zhang Y, Xu F, Liang H, et al. Exenatide inhibits the growth of endometrial cancer Ishikawa xenografts in nude mice[J]. Oncol Rep, 2016, 35(3):1340-1348. doi: 10.3892/or.2015.4476.
pmid: 26648451
|
| [12] |
Kanda R, Hiraike H, Wada-Hiraike O, et al. Expression of the glucagon-like peptide-1 receptor and its role in regulating autophagy in endometrial cancer[J]. BMC Cancer, 2018, 18(1):657. doi: 10.1186/s12885-018-4570-8.
pmid: 29907137
|
| [13] |
Zhu XX, Feng ZH, Liu LZ, et al. Liraglutide suppresses the proliferation of endometrial cancer cells through the adenosine 5'-monophosphate (AMP)-activated protein kinase signaling pathway[J]. Chin Med J(Engl), 2021, 134(5):576-578. doi: 10.1097/CM9.0000000000001363.
|
| [14] |
Zhang Y, Cheng J, Li J, et al. The GLP-1R Agonist Exendin-4 Attenuates Hyperglycemia-Induced Chemoresistance in Human Endometrial Cancer Cells Through ROS-Mediated Mitochondrial Pathway[J]. Front Oncol, 2021, 11:793530. doi: 10.3389/fonc.2021.793530.
|
| [15] |
李武, 刘松君, 阮凡, 等. 胰高血糖素样肽1受体在子宫内膜癌中的表达及意义研究[J]. 浙江医学, 2022, 44(19):2039-2043,2048,后插2. doi: 10.12056/j.issn.1006-2785.2022.44.19.2022-1089.
|
| [16] |
Li W, Gu Y, Liu S, et al. GLP1R inhibits the progression of endometrial carcinoma through activation of cAMP/PKA pathway[J]. J Clin Lab Anal, 2022, 36(10):e24604. doi: 10.1002/jcla.24604.
|
| [17] |
Li W, Lyu W, Liu S, et al. GLP1R boosts survival, migration and invasion of endometrial cancer cells and protects against ferroptotic cell death[J]. J Obstet Gynaecol, 2024, 44(1):2301324. doi: 10.1080/01443615.2023.2301324.
|
| [18] |
Gao Y, Jiao Y, Gong X, et al. Role of transcription factors in apoptotic cells clearance[J]. Front Cell Dev Biol, 2023, 11:1110225. doi: 10.3389/fcell.2023.1110225.
|
| [19] |
Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer[J]. Nat Rev Mol Cell Biol, 2023, 24(8):560-575. doi: 10.1038/s41580-023-00585-z.
|
| [20] |
Zhang L, Liu H, Xiong W, et al. CircFOXO3 mediates hypoxia-induced autophagy of endometrial stromal cells in endometriosis[J]. FASEB J, 2024, 38(5):e23515. doi: 10.1096/fj.202301654RR.
|
| [21] |
Devis-Jauregui L, Eritja N, Davis ML, et al. Autophagy in the physiological endometrium and cancer[J]. Autophagy, 2021, 17(5):1077-1095. doi: 10.1080/15548627.2020.1752548.
|
| [22] |
Krause GC, Lima KG, Dias HB, et al. Liraglutide, a glucagon-like peptide-1 analog, induce autophagy and senescence in HepG2 cells[J]. Eur J Pharmacol, 2017, 809:32-41. doi: 10.1016/j.ejphar.2017.05.015.
pmid: 28501576
|
| [23] |
Huang J, Chen Z, Wu Z, et al. Geniposide stimulates autophagy by activating the GLP-1R/AMPK/mTOR signaling in osteoarthritis chondrocytes[J]. Biomed Pharmacother, 2023, 167:115595. doi: 10.1016/j.biopha.2023.115595.
|
| [24] |
Li M, Jin S, Zhu X, et al. The role of ferroptosis in central nervous system damage diseases[J]. PeerJ, 2024, 12:e16741. doi: 10.7717/peerj.16741.
|
| [25] |
Lei G, Zhuang L, Gan B. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions[J]. Cancer Cell, 2024, 42(4):513-534. doi: 10.1016/j.ccell.2024.03.011.
pmid: 38593779
|
| [26] |
Zhang YY, Ni ZJ, Elam E, et al. Juglone, a novel activator of ferroptosis, induces cell death in endometrial carcinoma Ishikawa cells[J]. Food Funct, 2021, 12(11):4947-4959. doi: 10.1039/d1fo00790d.
|
| [27] |
Murakami H, Hayashi M, Terada S, et al. Medroxyprogesterone acetate-resistant endometrial cancer cells are susceptible to ferroptosis inducers[J]. Life Sci, 2023, 325:121753. doi: 10.1016/j.lfs.2023.121753.
|
| [28] |
Shen R, Qin S, Lv Y, et al. GLP-1 receptor agonist attenuates tubular cell ferroptosis in diabetes via enhancing AMPK-fatty acid metabolism pathway through macropinocytosis[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(4): 167060. doi: 10.1016/j.bbadis.2024.167060.
|
| [29] |
Jamasbi E, Hamelian M, Hossain MA, et al. The cell cycle, cancer development and therapy[J]. Mol Biol Rep, 2022, 49(11):10875-10883. doi: 10.1007/s11033-022-07788-1.
pmid: 35931874
|
| [30] |
Alanteet AA, Attia HA, Shaheen S, et al. Anti-Proliferative Activity of Glucagon-Like Peptide-1 Receptor Agonist on Obesity-Associated Breast Cancer: The Impact on Modulating Adipokines' Expression in Adipocytes and Cancer Cells[J]. Dose Response, 2021, 19(1):1559325821995651. doi: 10.1177/1559325821995651.
|
| [31] |
Chen D, Liang H, Huang L, et al. Liraglutide enhances the effect of checkpoint blockade in lung and liver cancers through the inhibition of neutrophil extracellular traps[J]. FEBS Open Bio, 2024, 14(8):1365-1377. doi: 10.1002/2211-5463.13499.
|
| [32] |
Tong G, Peng T, Chen Y, et al. Effects of GLP-1 Receptor Agonists on Biological Behavior of Colorectal Cancer Cells by Regulating PI3K/AKT/mTOR Signaling Pathway[J]. Front Pharmacol, 2022, 13:901559. doi: 10.3389/fphar.2022.901559.
|
| [33] |
Sun G, Tian J, Xiao Y, et al. Circular RNA circ_0005667 promotes cisplatin resistance of endometrial carcinoma cells by regulating IGF2BP1 through miR-145-5p[J]. Anticancer Drugs, 2023, 34(7):816-826. doi: 10.1097/CAD.0000000000001479.
|
| [34] |
Qiu J, Zheng Q, Meng X. Hyperglycemia and Chemoresistance in Breast Cancer: From Cellular Mechanisms to Treatment Response[J]. Front Oncol, 2021, 11:628359. doi: 10.3389/fonc.2021.628359.
|
| [35] |
Liu Z, Hayashi H, Matsumura K, et al. Hyperglycaemia induces metabolic reprogramming into a glycolytic phenotype and promotes epithelial-mesenchymal transitions via YAP/TAZ-Hedgehog signalling axis in pancreatic cancer[J]. Br J Cancer, 2023, 128(5):844-856. doi: 10.1038/s41416-022-02106-9.
|
| [36] |
Cheng HC, Chang TK, Su WC, et al. Narrative review of the influence of diabetes mellitus and hyperglycemia on colorectal cancer risk and oncological outcomes[J]. Transl Oncol, 2021, 14(7):101089. doi:10.1016/j.tranon.2021.101089.
|
| [37] |
Shahraki S, Bahraini F, Mesbahzadeh B, et al. Glucose increases proliferation and chemoresistance in chronic myeloid leukemia via decreasing antioxidant Properties of ω-3 polyunsaturated fatty acids in the presence of Iron[J]. Mol Biol Rep, 2023, 50(12):10315-10324. doi: 10.1007/s11033-023-08891-7.
pmid: 37971569
|