Journal of International Obstetrics and Gynecology ›› 2022, Vol. 49 ›› Issue (2): 176-180.doi: 10.12280/gjfckx.20211126
• Research on Gynecological Malignancies:Review • Previous Articles Next Articles
Received:
2021-12-08
Published:
2022-04-15
Online:
2022-05-09
Contact:
YAO Shu-zhong
E-mail:yaoshuzh@mail.sysu.edu.cn
HUANG Hua, YAO Shu-zhong. Application of Organoid in Cancer Research[J]. Journal of International Obstetrics and Gynecology, 2022, 49(2): 176-180.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5):646-674. doi: 10.1016/j.cell.2011.02.013.
doi: 10.1016/j.cell.2011.02.013 |
[2] |
Stadler M, Walter S, Walzl A, et al. Increased complexity in carcinomas: Analyzing and modeling the interaction of human cancer cells with their microenvironment[J]. Semin Cancer Biol, 2015, 35:107-124. doi: 10.1016/j.semcancer.2015.08.007.
doi: 10.1016/j.semcancer.2015.08.007 pmid: 26320002 |
[3] |
Li M, Izpisua Belmonte JC. Organoids-Preclinical Models of Human Disease[J]. N Engl J Med, 2019, 380(6):569-579. doi: 10.1056/NEJMra1806175.
doi: 10.1056/NEJMra1806175 |
[4] |
Clevers H. Modeling Development and Disease with Organoids[J]. Cell, 2016, 165(7):1586-1597. doi: 10.1016/j.cell.2016.05.082.
doi: S0092-8674(16)30729-2 pmid: 27315476 |
[5] |
Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model[J]. Pharmacol Ther, 2016, 163:94-108. doi: 10.1016/j.pharmthera.2016.03.013.
doi: 10.1016/j.pharmthera.2016.03.013 |
[6] |
Tuveson D, Clevers H. Cancer modeling meets human organoid technology[J]. Science, 2019, 364(6444):952-955. doi: 10.1126/science.aaw6985.
doi: 10.1126/science.aaw6985 pmid: 31171691 |
[7] |
Laurent J, Frongia C, Cazales M, et al. Multicellular tumor spheroid models to explore cell cycle checkpoints in 3D[J]. BMC Cancer, 2013, 13:73. doi: 10.1186/1471-2407-13-73.
doi: 10.1186/1471-2407-13-73 |
[8] |
Drost J, Clevers H. Organoids in cancer research[J]. Nat Rev Cancer, 2018, 18(7):407-418. doi: 10.1038/s41568-018-0007-6.
doi: 10.1038/s41568-018-0007-6 |
[9] |
Papapetrou EP. Patient-derived induced pluripotent stem cells in cancer research and precision oncology[J]. Nat Med, 2016, 22(12):1392-1401. doi: 10.1038/nm.4238.
doi: 10.1038/nm.4238 pmid: 27923030 |
[10] |
Broutier L, Mastrogiovanni G, Verstegen MM, et al. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening[J]. Nat Med, 2017, 23(12):1424-1435. doi: 10.1038/nm.4438.
doi: 10.1038/nm.4438 pmid: 29131160 |
[11] |
van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients[J]. Cell, 2015, 161(4):933-945. doi: 10.1016/j.cell.2015.03.053.
doi: 10.1016/j.cell.2015.03.053 pmid: 25957691 |
[12] |
Maru Y, Tanaka N, Ebisawa K, et al. Establishment and characterization of patient-derived organoids from a young patient with cervical clear cell carcinoma[J]. Cancer Sci, 2019, 110(9):2992-3005. doi: 10.1111/cas.14119.
doi: 10.1111/cas.14119 |
[13] |
Yan HHN, Siu HC, Law S, et al. A Comprehensive Human Gastric Cancer Organoid Biobank Captures Tumor Subtype Heterogeneity and Enables Therapeutic Screening[J]. Cell Stem Cell, 2018, 23(6):882-897.e11. doi: 10.1016/j.stem.2018.09.016.
doi: 10.1016/j.stem.2018.09.016 |
[14] |
Mazzucchelli S, Piccotti F, Allevi R, et al. Establishment and Morphological Characterization of Patient-Derived Organoids from Breast Cancer[J]. Biol Proced Online, 2019, 21:12. doi: 10.1186/s12575-019-0099-8.
doi: 10.1186/s12575-019-0099-8 pmid: 31223292 |
[15] |
Boj SF, Hwang CI, Baker LA, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160(1/2):324-338. doi: 10.1016/j.cell.2014.12.021.
doi: 10.1016/j.cell.2014.12.021 |
[16] |
Weber C. A biobank for bladder cancer[J]. Nat Cell Biol, 2018, 20(6):634. doi: 10.1038/s41556-018-0114-3.
doi: 10.1038/s41556-018-0114-3 |
[17] |
Kopper O, de Witte CJ, Lõhmussaar K, et al. An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity[J]. Nat Med, 2019, 25(5):838-849. doi: 10.1038/s41591-019-0422-6.
doi: 10.1038/s41591-019-0422-6 pmid: 31011202 |
[18] |
Lin M, Gao M, Cavnar MJ, et al. Utilizing gastric cancer organoids to assess tumor biology and personalize medicine[J]. World J Gastrointest Oncol, 2019, 11(7):509-517. doi: 10.4251/wjgo.v11.i7.509.
doi: 10.4251/wjgo.v11.i7.509 |
[19] |
Choi SI, Jeon AR, Kim MK, et al. Development of Patient-Derived Preclinical Platform for Metastatic Pancreatic Cancer: PDOX and a Subsequent Organoid Model System Using Percutaneous Biopsy Samples[J]. Front Oncol, 2019, 9:875. doi: 10.3389/fonc.2019.00875.
doi: 10.3389/fonc.2019.00875 pmid: 31572675 |
[20] |
Sachs N, de Ligt J, Kopper O, et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity[J]. Cell, 2018, 172(1/2):373-386.e10. doi: 10.1016/j.cell.2017.11.010.
doi: 10.1016/j.cell.2017.11.010 |
[21] |
Driehuis E, van Hoeck A, Moore K, et al. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening[J]. Proc Natl Acad Sci U S A, 2019, 116(52):26580-26590. doi: 10.1073/pnas.1911273116.
doi: 10.1073/pnas.1911273116 |
[22] |
Byrne AT, Alférez DG, Amant F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts[J]. Nat Rev Cancer, 2017, 17(4):254-268. doi: 10.1038/nrc.2016.140.
doi: 10.1038/nrc.2016.140 |
[23] |
Jung J, Seol HS, Chang S. The Generation and Application of Patient-Derived Xenograft Model for Cancer Research[J]. Cancer Res Treat, 2018, 50(1):1-10. doi: 10.4143/crt.2017.307.
doi: 10.4143/crt.2017.307 |
[24] |
Ganesh K, Wu C, O′Rourke KP, et al. A rectal cancer organoid platform to study individual responses to chemoradiation[J]. Nat Med, 2019, 25(10):1607-1614. doi: 10.1038/s41591-019-0584-2.
doi: 10.1038/s41591-019-0584-2 |
[25] |
Yao Y, Xu X, Yang L, et al. Patient-Derived Organoids Predict Chemoradiation Responses of Locally Advanced Rectal Cancer[J]. Cell Stem Cell, 2020, 26(1):17-26.e6. doi: 10.1016/j.stem.2019.10.010.
doi: S1934-5909(19)30431-X pmid: 31761724 |
[26] |
Weeber F, Ooft SN, Dijkstra KK, et al. Tumor Organoids as a Pre-clinical Cancer Model for Drug Discovery[J]. Cell Chem Biol, 2017, 24(9):1092-1100. doi: 10.1016/j.chembiol.2017.06.012.
doi: S2451-9456(17)30226-X pmid: 28757181 |
[27] |
Guo WM, Loh XJ, Tan EY, et al. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening[J]. Mol Pharm, 2014, 11(7):2182-2189. doi: 10.1021/mp5000604.
doi: 10.1021/mp5000604 |
[28] |
Gao H, Korn JM, Ferretti S, et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response[J]. Nat Med, 2015, 21(11):1318-1325. doi: 10.1038/nm.3954.
doi: 10.1038/nm.3954 |
[29] |
DiMasi JA, Reichert JM, Feldman L, et al. Clinical approval success rates for investigational cancer drugs[J]. Clin Pharmacol Ther, 2013, 94(3):329-335. doi: 10.1038/clpt.2013.117.
doi: 10.1038/clpt.2013.117 pmid: 23739536 |
[30] |
Dhimolea E, de Matos Simoes R, Kansara D, et al. An Embryonic Diapause-like Adaptation with Suppressed Myc Activity Enables Tumor Treatment Persistence[J]. Cancer Cell, 2021, 39(2):240-256.e11. doi: 10.1016/j.ccell.2020.12.002.
doi: 10.1016/j.ccell.2020.12.002 pmid: 33417832 |
[31] |
Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378):920-926. doi: 10.1126/science.aao2774.
doi: 10.1126/science.aao2774 pmid: 29472484 |
[32] |
Jabs J, Zickgraf FM, Park J, et al. Screening drug effects in patient-derived cancer cells links organoid responses to genome alterations[J]. Mol Syst Biol, 2017, 13(11):955. doi: 10.15252/msb.20177697.
doi: 10.15252/msb.20177697 |
[33] |
Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling[J]. Drug Discov Today, 2016, 21(9):1399-1411. doi: 10.1016/j.drudis.2016.07.003.
doi: 10.1016/j.drudis.2016.07.003 |
[34] |
Drost J, van Jaarsveld RH, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells[J]. Nature, 2015, 521(7550):43-47. doi: 10.1038/nature14415.
doi: 10.1038/nature14415 |
[35] |
Matano M, Date S, Shimokawa M, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids[J]. Nat Med, 2015, 21(3):256-262. doi: 10.1038/nm.3802.
doi: 10.1038/nm.3802 pmid: 25706875 |
[36] |
Tsai S, McOlash L, Palen K, et al. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models[J]. BMC Cancer, 2018, 18(1):335. doi: 10.1186/s12885-018-4238-4.
doi: 10.1186/s12885-018-4238-4 |
[37] |
Neal JT, Li X, Zhu J, et al. Organoid Modeling of the Tumor Immune Microenvironment[J]. Cell, 2018, 175(7):1972-1988.e16. doi: 10.1016/j.cell.2018.11.021.
doi: 10.1016/j.cell.2018.11.021 |
[1] | ZHANG Hao-sheng, WEI Fang. Research Progress of Nectin-4 in Gynecologic Malignancies [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 165-168. |
[2] | GUO Jing, ZHANG Mao-xiang, ZHOU Chun-he, LIU Si-ning, LI Hui-yan. The Progress of Mendelian Randomization in the Study of the Causal Relationship between Exposure Factors and Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 169-174. |
[3] | CHAI Ling-na, LI Yan-li, SHI Jie, GAO Han, OUYANG Xi-yan, CHENG Shi-yu. Clinical Application of Indocyanine Green Tracing of Sentinel Lymph Nodes in Early Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 175-179. |
[4] | YIN Yu-xin, WANG Chang-he. A Case Report of Deep Aggressive Angiomyxoma of Female Pelvis in An Elderly Female [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 191-194. |
[5] | WANG Jia-li, MA Guo-xia, WEI Jia, LIU Si-min, YANG Yong-xiu. T-Lymphoblastic Lymphoma of Reproductive System: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 195-199. |
[6] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
[7] | HU Ming-zhu, LIU Li-wen, HUANG Lei. The Relationship between Vaginal Microecology and Cervical Cancer in HIV-Infected Women [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 13-18. |
[8] | ZHANG Yun-feng, ZHANG Wan-yue, LU Yue, WANG Yang-yang, JING Jia-yu, MU Jing-yi, WANG Yue. Research Progress of ARID1A and PIK3CA Mutations in Malignant Transformation of Ovarian Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 19-22. |
[9] | LI Nan, PENG Er-xuan, LIU Feng-hua. Clinical Analysis of 20 Cases of Brain Metastasis from Ovarian Epithelial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 23-27. |
[10] | JIA Yan-feng, WU Zhen-zhen, WANG Wei-hong, WANG Yue-yuan, LI Juan. A Case of Primary Ovarian Adenosquamous Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 32-36. |
[11] | SONG Li-fang, WU Zhen-zhen, MAO Bao-hong, ZHAO Xiao-li, LIU Qing. A Case of Isolated Lymph Node Metastasis from Ovarian Cancer to the Inguinal Region [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 37-41. |
[12] | LUO Na, CHEN Yan. A Case of Recurrent Uterine Smooth Muscle Tumor of Uncertain Malignant Potential Underwent Hysterectomy after Hysteroscopic Lesion Resection [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 42-45. |
[13] | ZHANG Ye, CHEN Qiao-yun, ZHAO Jia-yi, CHEN Lu, LIU Jian-rong. Progress in the Application of Nanoparticles in the Prevention and Treatment of Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 8-12. |
[14] | LIU Si-min, LI Hong-li, GUO Xi, HU Ya-li, YANG Yong-xiu. Late Pregnancy with Ovarian Serous Cystadenoma Pedicle Torsion: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 632-635. |
[15] | CHEN Xing-yu, WEI Ya-jing, LIANG Yan-chun. Advances in Uterine Leiomyosarcoma:Mapping Based on Genomics [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 641-647. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||