Journal of International Obstetrics and Gynecology ›› 2022, Vol. 49 ›› Issue (4): 361-365.doi: 10.12280/gjfckx.20220026
• Research on Gynecological Malignancies: Review • Next Articles
PING Quan-hong, LI Na, HU Yuan-jing()
Received:
2022-01-11
Published:
2022-08-15
Online:
2022-08-19
Contact:
HU Yuan-jing
E-mail:tdjhyj@hotmail.com
PING Quan-hong, LI Na, HU Yuan-jing. Application of Metabonomics in the Treatment and Prognosis of Common Gynecological Tumors[J]. Journal of International Obstetrics and Gynecology, 2022, 49(4): 361-365.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Vsiansky V, Svobodova M, Gumulec J, et al. Prognostic Significance of Serum Free Amino Acids in Head and Neck Cancers[J]. Cells, 2019, 8(5):428. doi: 10.3390/cells8050428.
doi: 10.3390/cells8050428 |
[2] |
Wang YP, Li JT, Qu J, et al. Metabolite sensing and signaling in cancer[J]. J Biol Chem, 2020, 295(33):11938-11946. doi: 10.1074/jbc.REV119.007624.
doi: 10.1074/jbc.REV119.007624 |
[3] |
Kuroki L, Guntupalli SR. Treatment of epithelial ovarian cancer[J]. BMJ, 2020, 371:m3773. doi: 10.1136/bmj.m3773.
doi: 10.1136/bmj.m3773 |
[4] |
Lertkhachonsuk AA, Buranawongtrakoon S, Lekskul N, et al. Serum CA19-9, CA-125 and CEA as tumor markers for mucinous ovarian tumors[J]. J Obstet Gynaecol Res, 2020, 46(11):2287-2291. doi: 10.1111/jog.14427.
doi: 10.1111/jog.14427 |
[5] |
Tiss A, Timms JF, Smith C, et al. Highly accurate detection of ovarian cancer using CA125 but limited improvement with serum matrix-assisted laser desorption/ionization time-of-flight mass spectrometry profiling[J]. Int J Gynecol Cancer, 2010, 20(9):1518-1524.
pmid: 21370595 |
[6] |
Ahmed-Salim Y, Galazis N, Bracewell-Milnes T, et al. The application of metabolomics in ovarian cancer management: a systematic review[J]. Int J Gynecol Cancer, 2021, 31(5):754-774. doi: 10.1136/ijgc-2020-001862.
doi: 10.1136/ijgc-2020-001862 pmid: 33106272 |
[7] |
Terry KL, Schock H, Fortner RT, et al. A Prospective Evaluation of Early Detection Biomarkers for Ovarian Cancer in the European EPIC Cohort[J]. Clin Cancer Res, 2016, 22(18):4664-4675. doi: 10.1158/1078-0432.CCR-16-0316.
doi: 10.1158/1078-0432.CCR-16-0316 |
[8] |
Peng H, Wang Y, Luo W. Multifaceted role of branched-chain amino acid metabolism in cancer[J]. Oncogene, 2020, 39(44):6747-6756. doi: 10.1038/s41388-020-01480-z.
doi: 10.1038/s41388-020-01480-z |
[9] |
Nguyen T, Kirsch BJ, Asaka R, et al. Uncovering the Role of N-Acetyl-Aspartyl-Glutamate as a Glutamate Reservoir in Cancer[J]. Cell Rep, 2019, 27(2):491-501.e6. doi: 10.1016/j.celrep.2019.03.036.
doi: S2211-1247(19)30352-3 pmid: 30970252 |
[10] |
Wu JY, Huang TW, Hsieh YT, et al. Cancer-Derived Succinate Promotes Macrophage Polarization and Cancer Metastasis via Succinate Receptor[J]. Mol Cell, 2020, 77(2):213-227.e5. doi: 10.1016/j.molcel.2019.10.023.
doi: 10.1016/j.molcel.2019.10.023 |
[11] |
Zhang J, Zhang Q, Yang Y, et al. Association Between Succinate Receptor SUCNR1 Expression and Immune Infiltrates in Ovarian Cancer[J]. Front Mol Biosci, 2020, 7:150. doi: 10.3389/fmolb.2020.00150.
doi: 10.3389/fmolb.2020.00150 |
[12] |
Xia L, Zhang H, Wang X, et al. The Role of Succinic Acid Metabolism in Ovarian Cancer[J]. Front Oncol, 2021, 11:769196. doi: 10.3389/fonc.2021.769196.
doi: 10.3389/fonc.2021.769196 |
[13] |
Muys BR, Sousa JF, Plaça JR, et al. miR-450a Acts as a Tumor Suppressor in Ovarian Cancer by Regulating Energy Metabolism[J]. Cancer Res, 2019, 79(13):3294-3305. doi: 10.1158/0008-5472.CAN-19-0490.
doi: 10.1158/0008-5472.CAN-19-0490 |
[14] |
Gan C, Huang X, Wu Y, et al. Untargeted metabolomics study and pro-apoptotic properties of B-norcholesteryl benzimidazole compounds in ovarian cancer SKOV3 cells[J]. J Steroid Biochem Mol Biol, 2020, 202:105709. doi: 10.1016/j.jsbmb.2020.105709.
doi: 10.1016/j.jsbmb.2020.105709 |
[15] |
Yang J, Zaman MM, Vlasakov I, et al. Adipocytes promote ovarian cancer chemoresistance[J]. Sci Rep, 2019, 9(1):13316. doi: 10.1038/s41598-019-49649-1.
doi: 10.1038/s41598-019-49649-1 |
[16] |
Li J, Xie H, Li A, et al. Distinct plasma lipids profiles of recurrent ovarian cancer by liquid chromatography-mass spectrometry[J]. Oncotarget, 2017, 8(29):46834-46845. doi: 10.18632/oncotarget.11603.
doi: 10.18632/oncotarget.11603 |
[17] |
Reinartz S, Lieber S, Pesek J, et al. Cell type-selective pathways and clinical associations of lysophosphatidic acid biosynthesis and signaling in the ovarian cancer microenvironment[J]. Mol Oncol, 2019, 13(2):185-201. doi: 10.1002/1878-0261.12396.
doi: 10.1002/1878-0261.12396 pmid: 30353652 |
[18] | Braun MM, Overbeek-Wager EA, Grumbo RJ. Diagnosis and Management of Endometrial Cancer[J]. Am Fam Physician, 2016, 93(6):468-474. |
[19] |
Cao Y. Adipocyte and lipid metabolism in cancer drug resistance[J]. J Clin Invest, 2019, 129(8):3006-3017. doi: 10.1172/JCI127201.
doi: 10.1172/JCI127201 |
[20] |
Pierce SR, Fang Z, Yin Y, et al. Targeting dopamine receptor D2 as a novel therapeutic strategy in endometrial cancer[J]. J Exp Clin Cancer Res, 2021, 40(1):61. doi: 10.1186/s13046-021-01842-9.
doi: 10.1186/s13046-021-01842-9 |
[21] |
Altadill T, Dowdy TM, Gill K, et al. Metabolomic and Lipidomic Profiling Identifies The Role of the RNA Editing Pathway in Endometrial Carcinogenesis[J]. Sci Rep, 2017, 7(1):8803. doi: 10.1038/s41598-017-09169-2.
doi: 10.1038/s41598-017-09169-2 pmid: 28821813 |
[22] |
Herbert A. AD AR and Immune Silencing in Cancer[J]. Trends Cancer, 2019, 5(5):272-282. doi: 10.1016/j.trecan.2019.03.004.
doi: S2405-8033(19)30069-X pmid: 31174840 |
[23] |
Dalla Pozza E, Dando I, Pacchiana R, et al. Regulation of succinate dehydrogenase and role of succinate in cancer[J]. Semin Cell Dev Biol, 2020, 98:4-14. doi: 10.1016/j.semcdb.2019.04.013.
doi: 10.1016/j.semcdb.2019.04.013 |
[24] |
Jiang S, Yan W. Succinate in the cancer-immune cycle[J]. Cancer Lett, 2017, 390:45-47. doi: 10.1016/j.canlet.2017.01.019.
doi: 10.1016/j.canlet.2017.01.019 |
[25] |
Iplik ES, Catmakas T, Cakmakoglu B. A new target for the treatment of endometrium cancer by succinic acid[J]. Cell Mol Biol(Noisy-le-grand), 2018, 64(1):60-63. doi: 10.14715/cmb/2018.64.1.11.
doi: 10.14715/cmb/2018.64.1.11 |
[26] |
Hu G, Zhang J, Zhou X, et al. Roles of estrogen receptor α and β in the regulation of proliferation in endometrial carcinoma[J]. Pathol Res Pract, 2020, 216(10):153149. doi: 10.1016/j.prp.2020.153149.
doi: 10.1016/j.prp.2020.153149 |
[27] |
Audet-Delage Y, Grégoire J, Caron P, et al. Estradiol metabolites as biomarkers of endometrial cancer prognosis after surgery[J]. J Steroid Biochem Mol Biol, 2018, 178:45-54. doi: 10.1016/j.jsbmb.2017.10.021.
doi: 10.1016/j.jsbmb.2017.10.021 |
[28] |
Liput KP, Lepczyński A, Ogłuszka M, et al. Effects of Dietary n-3 and n-6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis[J]. Int J Mol Sci, 2021, 22(13):6965. doi: 10.3390/ijms22136965.
doi: 10.3390/ijms22136965 |
[29] |
Lunde S, Nguyen HT, Petersen KK, et al. Chronic Postoperative Pain After Hysterectomy for Endometrial Cancer: A Metabolic Profiling Study[J]. Mol Pain, 2020, 16:1744806920923885. doi: 10.1177/1744806920923885.
doi: 10.1177/1744806920923885 |
[30] |
Kawaguchi K, Kinameri A, Suzuki S, et al. The cancer-promoting gene fatty acid-binding protein 5 (FABP5) is epigenetically regulated during human prostate carcinogenesis[J]. Biochem J, 2016, 473(4):449-461. doi: 10.1042/BJ20150926.
doi: 10.1042/BJ20150926 pmid: 26614767 |
[31] |
Zhang C, Liao Y, Liu P, et al. FABP5 promotes lymph node metastasis in cervical cancer by reprogramming fatty acid metabolism[J]. Theranostics, 2020, 10(15):6561-6580. doi: 10.7150/thno.44868.
doi: 10.7150/thno.44868 |
[32] |
Hayashi Y, Yokota A, Harada H, et al. Hypoxia/pseudohypoxia-mediated activation of hypoxia-inducible factor-1α in cancer[J]. Cancer Sci, 2019, 110(5):1510-1517. doi: 10.1111/cas.13990.
doi: 10.1111/cas.13990 |
[33] |
Castelli S, Ciccarone F, Tavian D, et al. ROS-dependent HIF1α activation under forced lipid catabolism entails glycolysis and mitophagy as mediators of higher proliferation rate in cervical cancer cells[J]. J Exp Clin Cancer Res, 2021, 40(1):94. doi: 10.1186/s13046-021-01887-w.
doi: 10.1186/s13046-021-01887-w |
[34] |
Xu LX, Hao LJ, Ma JQ, et al. SIRT3 promotes the invasion and metastasis of cervical cancer cells by regulating fatty acid synthase[J]. Mol Cell Biochem, 2020, 464(1/2):11-20. doi: 10.1007/s11010-019-03644-2.
doi: 10.1007/s11010-019-03644-2 |
[35] |
Dong B, Yang Y, Han A, et al. Ectopic expression of HSDL2 is related to cell proliferation and prognosis in breast cancer[J]. Cancer Manag Res, 2019, 11:6531-6542. doi: 10.2147/CMAR.S205316.
doi: 10.2147/CMAR.S205316 |
[36] |
Yang Y, Han A, Wang X, et al. Lipid metabolism regulator human hydroxysteroid dehydrogenase-like 2 (HSDL2) modulates cervical cancer cell proliferation and metastasis[J]. J Cell Mol Med, 2021, 25(10):4846-4859. doi: 10.1111/jcmm.16461.
doi: 10.1111/jcmm.16461 |
[37] |
Gadducci A, Cosio S. Neoadjuvant Chemotherapy in Locally Advanced Cervical Cancer: Review of the Literature and Perspectives of Clinical Research[J]. Anticancer Res, 2020, 40(9):4819-4828. doi: 10.21873/anticanres.14485.
doi: 10.21873/anticanres.14485 pmid: 32878770 |
[38] |
Song Y, Liu Y, Lin M, et al. Efficacy of neoadjuvant platinum-based chemotherapy during the second and third trimester of pregnancy in women with cervical cancer: an updated systematic review and meta-analysis[J]. Drug Des Devel Ther, 2018, 13:79-102. doi: 10.2147/DDDT.S186966.
doi: 10.2147/DDDT.S186966 |
[39] |
Hou Y, Yin M, Sun F, et al. A metabolomics approach for predicting the response to neoadjuvant chemotherapy in cervical cancer patients[J]. Mol Biosyst, 2014, 10(8):2126-2133. doi: 10.1039/c4mb00054d.
doi: 10.1039/c4mb00054d |
[40] |
Abudula A, Rouzi N, Xu L, et al. Tissue-based metabolomics reveals potential biomarkers for cervical carcinoma and HPV infection[J]. Bosn J Basic Med Sci, 2020, 20(1):78-87. doi: 10.17305/bjbms.2019.4359.
doi: 10.17305/bjbms.2019.4359 |
[41] |
Lin F, Zheng R, Yu C, et al. Predictive role of serum cholesterol and triglycerides in cervical cancer survival[J]. Int J Gynecol Cancer, 2021, 31(2):171-176. doi: 10.1136/ijgc-2020-001333.
doi: 10.1136/ijgc-2020-001333 |
[42] |
Zhou H, Li Q, Wang T, et al. Prognostic biomarkers of cervical squamous cell carcinoma identified via plasma metabolomics[J]. Medicine(Baltimore), 2019, 98(26):e16192. doi: 10.1097/MD.0000000000016192.
doi: 10.1097/MD.0000000000016192 |
[1] | CHEN Xiao-juan, ZHANG Yan-xin. A Case of Full-Term Delivery in A Pregnant Patient with Hemophilia A [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 158-160. |
[2] | ZHANG Hao-sheng, WEI Fang. Research Progress of Nectin-4 in Gynecologic Malignancies [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 165-168. |
[3] | GUO Jing, ZHANG Mao-xiang, ZHOU Chun-he, LIU Si-ning, LI Hui-yan. The Progress of Mendelian Randomization in the Study of the Causal Relationship between Exposure Factors and Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 169-174. |
[4] | CHAI Ling-na, LI Yan-li, SHI Jie, GAO Han, OUYANG Xi-yan, CHENG Shi-yu. Clinical Application of Indocyanine Green Tracing of Sentinel Lymph Nodes in Early Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 175-179. |
[5] | JIANG Ai-mei, ZHANG Xin-mei. Advances in the Treatment of Abdominal Wall Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 211-216. |
[6] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
[7] | HOU Chun-yan, DU Xiu-ping. Two Cases of Spontaneous Uterine Rupture in the Middle and Late Stages of Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 110-113. |
[8] | ZHONG Pei-qu, ZHAO Li-jian, ZOU Xin-xin. A Case of Rudimentary Horn Pregnancy Undergoing Expectant Treatment until the Third Trimester [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 114-116. |
[9] | HU Ming-zhu, LIU Li-wen, HUANG Lei. The Relationship between Vaginal Microecology and Cervical Cancer in HIV-Infected Women [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 13-18. |
[10] | ZHANG Yun-feng, ZHANG Wan-yue, LU Yue, WANG Yang-yang, JING Jia-yu, MU Jing-yi, WANG Yue. Research Progress of ARID1A and PIK3CA Mutations in Malignant Transformation of Ovarian Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 19-22. |
[11] | LI Nan, PENG Er-xuan, LIU Feng-hua. Clinical Analysis of 20 Cases of Brain Metastasis from Ovarian Epithelial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 23-27. |
[12] | PAN Qi, FENG Tong-fu, JIN Jing, WU Ying, DU Xin. Laparoscopic Resection of Giant Mature Retroperitoneal Teratoma in An Adult: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 28-31. |
[13] | JIA Yan-feng, WU Zhen-zhen, WANG Wei-hong, WANG Yue-yuan, LI Juan. A Case of Primary Ovarian Adenosquamous Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 32-36. |
[14] | SONG Li-fang, WU Zhen-zhen, MAO Bao-hong, ZHAO Xiao-li, LIU Qing. A Case of Isolated Lymph Node Metastasis from Ovarian Cancer to the Inguinal Region [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 37-41. |
[15] | SHI Bai-chao, WANG Yu, CHANG Hui, LU Feng-juan, GUAN Mu-xin, YU Jian-nan, WU Xiao-ke. Mechanism of Traditional Chinese Medicine and Natural Products in Improving Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 66-71. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||