Journal of International Obstetrics and Gynecology ›› 2023, Vol. 50 ›› Issue (3): 290-296.doi: 10.12280/gjfckx.20220985
• Research on Gynecological Malignancies: Original Article • Previous Articles Next Articles
WANG Yi-xuan, ZHANG Shao-hua, WANG Zan-hong()
Received:
2022-11-24
Published:
2023-06-15
Online:
2023-06-27
Contact:
WANG Zan-hong, E-mail: WANG Yi-xuan, ZHANG Shao-hua, WANG Zan-hong. Effect of CD2 Gene on Immune Infiltration in Tumor Microenvironment of Ovarian Cancer[J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 290-296.
Add to citation manager EndNote|Ris|BibTeX
影响因素 | B | SE | Wald χ2 | HR | 95%CI | P |
---|---|---|---|---|---|---|
B细胞 | -1.906 | 0.570 | 4.470 | 0.149 | 0.000~60.750 | 0.534 |
CD8+ T细胞 | -3.238 | 0.700 | 81.438 | 0.039 | 0.001~1.643 | 0.089 |
CD4+ T细胞 | -15.241 | 2.973 | 13.370 | 0.000 | 0.000~0.000 | 0.000 |
巨噬细胞 | 9.442 | 1.078 | 83.262 | 12 612.838 | 60.580~2 626 013.740 | 0.001 |
中性粒细胞 | 9.025 | 0.983 | 15.302 | 8 305.325 | 1.521~45 359 183.998 | 0.040 |
树突状细胞 | -0.922 | 0.566 | 4.469 | 0.398 | 0.004~39.274 | 0.694 |
影响因素 | B | SE | Wald χ2 | HR | 95%CI | P |
---|---|---|---|---|---|---|
B细胞 | -1.906 | 0.570 | 4.470 | 0.149 | 0.000~60.750 | 0.534 |
CD8+ T细胞 | -3.238 | 0.700 | 81.438 | 0.039 | 0.001~1.643 | 0.089 |
CD4+ T细胞 | -15.241 | 2.973 | 13.370 | 0.000 | 0.000~0.000 | 0.000 |
巨噬细胞 | 9.442 | 1.078 | 83.262 | 12 612.838 | 60.580~2 626 013.740 | 0.001 |
中性粒细胞 | 9.025 | 0.983 | 15.302 | 8 305.325 | 1.521~45 359 183.998 | 0.040 |
树突状细胞 | -0.922 | 0.566 | 4.469 | 0.398 | 0.004~39.274 | 0.694 |
[1] |
Lisio MA, Fu L, Goyeneche A, et al. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints[J]. Int J Mol Sci, 2019, 20(4):952. doi: 10.3390/ijms20040952.
doi: 10.3390/ijms20040952 |
[2] |
Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: Evolution of management in the era of precision medicine[J]. CA Cancer J Clin, 2019, 69(4):280-304. doi: 10.3322/caac.21559.
doi: 10.3322/caac.21559 |
[3] |
Li Q, Pan Y, Cao Z, et al. Comprehensive Analysis of Prognostic Value and Immune Infiltration of Chromobox Family Members in Colorectal Cancer[J]. Front Oncol, 2020, 10:582667. doi: 10.3389/fonc.2020.582667.
doi: 10.3389/fonc.2020.582667 |
[4] |
Hinshaw DC, Shevde LA. The Tumor Microenvironment Innately Modulates Cancer Progression[J]. Cancer Res, 2019, 79(18):4557-4566. doi: 10.1158/0008-5472.CAN-18-3962.
doi: 10.1158/0008-5472.CAN-18-3962 pmid: 31350295 |
[5] |
Bader JE, Voss K, Rathmell JC. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy[J]. Mol Cell, 2020, 78(6):1019-1033. doi: 10.1016/j.molcel.2020.05.034.
doi: S1097-2765(20)30355-5 pmid: 32559423 |
[6] |
Chen Y, Meng Z, Zhang L, et al. CD2 Is a Novel Immune-Related Prognostic Biomarker of Invasive Breast Carcinoma That Modulates the Tumor Microenvironment[J]. Front Immunol, 2021, 12:664845. doi: 10.3389/fimmu.2021.664845.
doi: 10.3389/fimmu.2021.664845 |
[7] |
Binder C, Cvetkovski F, Sellberg F, et al. CD2 Immunobiology[J]. Front Immunol, 2020, 11:1090. doi: 10.3389/fimmu.2020.01090.
doi: 10.3389/fimmu.2020.01090 pmid: 32582179 |
[8] |
Matsui T, Connolly JE, Michnevitz M, et al. CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions[J]. J Immunol, 2009, 182(11):6815-6823. doi: 10.4049/jimmunol.0802008.
doi: 10.4049/jimmunol.0802008 pmid: 19454677 |
[9] |
Ghosh A, Marques-Piubelli ML, Wang X, et al. CD2-negative lymphoma-associated T-cells: a potential mechanism of immune-evasion in diffuse large B-cell lymphoma[J]. Virchows Arch, 2022, 481(4):659-663. doi: 10.1007/s00428-022-03348-x.
doi: 10.1007/s00428-022-03348-x |
[10] |
Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1):W98-W102. doi: 10.1093/nar/gkx247.
doi: 10.1093/nar/gkx247 |
[11] |
Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discov, 2012, 2(5):401-404. doi: 10.1158/2159-8290.CD-12-0095.
doi: 10.1158/2159-8290.CD-12-0095 pmid: 22588877 |
[12] |
Alam O. A single-cell-type transcriptomics map of human tissues[J]. Nat Genet, 2021, 53(9):1275. doi: 10.1038/s41588-021-00938-4.
doi: 10.1038/s41588-021-00938-4 pmid: 34493863 |
[13] |
Chandrashekar DS, Bashel B, Balasubramanya S, et al. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses[J]. Neoplasia, 2017, 19(8):649-658. doi: 10.1016/j.neo.2017.05.002.
doi: S1476-5586(17)30179-3 pmid: 28732212 |
[14] |
Lánczky A, Györffy B. Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation[J]. J Med Internet Res, 2021, 23(7):e27633. doi: 10.2196/27633.
doi: 10.2196/27633 |
[15] |
Yang S, Kim CY, Hwang S, et al. COEXPEDIA: exploring biomedical hypotheses via co-expressions associated with medical subject headings (MeSH)[J]. Nucleic Acids Res, 2017, 45(D1):D389-D396. doi: 10.1093/nar/gkw868.
doi: 10.1093/nar/gkw868 |
[16] |
Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function[J]. Nucleic Acids Res, 2010, 38(Web Server issue):W214-W220. doi: 10.1093/nar/gkq537.
doi: 10.1093/nar/gkq537 |
[17] |
Li T, Fan J, Wang B, et al. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells[J]. Cancer Res, 2017, 77(21):e108-e110. doi: 10.1158/0008-5472.CAN-17-0307.
doi: 10.1158/0008-5472.CAN-17-0307 |
[18] |
McCloskey CW, Rodriguez GM, Galpin K, et al. Ovarian Cancer Immunotherapy: Preclinical Models and Emerging Therapeutics[J]. Cancers(Basel), 2018, 10(8):244. doi: 10.3390/cancers10080244.
doi: 10.3390/cancers10080244 |
[19] |
Odunsi K. Immunotherapy in ovarian cancer[J]. Ann Oncol, 2017, 28(suppl_8):viii1-viii7. doi: 10.1093/annonc/mdx444.
doi: 10.1093/annonc/mdx444 |
[20] |
Coukos G, Tanyi J, Kandalaft LE. Opportunities in immunotherapy of ovarian cancer[J]. Ann Oncol, 2016, 27(Suppl 1):i11-i15. doi: 10.1093/annonc/mdw084.
doi: 10.1093/annonc/mdw084 |
[21] |
Arneth B. Tumor Microenvironment[J]. Medicina(Kaunas), 2019, 56(1):15. doi: 10.3390/medicina56010015.
doi: 10.3390/medicina56010015 |
[22] |
An Y, Yang Q. Tumor-associated macrophage-targeted therapeutics in ovarian cancer[J]. Int J Cancer, 2021, 149(1):21-30. doi: 10.1002/ijc.33408.
doi: 10.1002/ijc.33408 pmid: 33231290 |
[23] |
Wang C, Ma C, Gong L, et al. Macrophage Polarization and Its Role in Liver Disease[J]. Front Immunol, 2021, 12:803037. doi: 10.3389/fimmu.2021.803037.
doi: 10.3389/fimmu.2021.803037 |
[24] |
Lee W, Ko SY, Mohamed MS, et al. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum[J]. J Exp Med, 2019, 216(1):176-194. doi: 10.1084/jem.20181170.
doi: 10.1084/jem.20181170 |
[25] |
Chen F, Xu Y, Chen Y, et al. TIGIT enhances CD4+ regulatory T-cell response and mediates immune suppression in a murine ovarian cancer model[J]. Cancer Med, 2020, 9(10):3584-3591. doi: 10.1002/cam4.2976.
doi: 10.1002/cam4.2976 |
[26] |
Zhang M, Shi M, Yu Y, et al. The Immune Subtypes and Landscape of Advanced-Stage Ovarian Cancer[J]. Vaccines(Basel), 2022, 10(9):1451. doi: 10.3390/vaccines10091451.
doi: 10.3390/vaccines10091451 |
[27] |
Crean-Tate KK, Braley C, Dey G, et al. Pretreatment with LCK inhibitors chemosensitizes cisplatin-resistant endometrioid ovarian tumors[J]. J Ovarian Res, 2021, 14(1):55. doi: 10.1186/s13048-021-00797-x.
doi: 10.1186/s13048-021-00797-x pmid: 33888137 |
[28] |
Kim S, Han Y, Kim SI, et al. Computational modeling of malignant ascites reveals CCL5-SDC4 interaction in the immune microenvironment of ovarian cancer[J]. Mol Carcinog, 2021, 60(5):297-312. doi: 10.1002/mc.23289.
doi: 10.1002/mc.23289 |
[1] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
[2] | ZHANG Yun-feng, ZHANG Wan-yue, LU Yue, WANG Yang-yang, JING Jia-yu, MU Jing-yi, WANG Yue. Research Progress of ARID1A and PIK3CA Mutations in Malignant Transformation of Ovarian Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 19-22. |
[3] | LI Nan, PENG Er-xuan, LIU Feng-hua. Clinical Analysis of 20 Cases of Brain Metastasis from Ovarian Epithelial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 23-27. |
[4] | JIA Yan-feng, WU Zhen-zhen, WANG Wei-hong, WANG Yue-yuan, LI Juan. A Case of Primary Ovarian Adenosquamous Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 32-36. |
[5] | SONG Li-fang, WU Zhen-zhen, MAO Bao-hong, ZHAO Xiao-li, LIU Qing. A Case of Isolated Lymph Node Metastasis from Ovarian Cancer to the Inguinal Region [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 37-41. |
[6] | ZHANG Ye, CHEN Qiao-yun, ZHAO Jia-yi, CHEN Lu, LIU Jian-rong. Progress in the Application of Nanoparticles in the Prevention and Treatment of Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 8-12. |
[7] | LIU Si-min, LI Hong-li, GUO Xi, HU Ya-li, YANG Yong-xiu. Late Pregnancy with Ovarian Serous Cystadenoma Pedicle Torsion: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 632-635. |
[8] | CHEN Zhi-ru, DAI Lan. Research Progress of the Relationship between Chemoradiotherapy-Induced Tumor Cell Death and Tumor Repopulation [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 648-653. |
[9] | LI Dan-ning, WANG Xi-peng. Research Progress on Utilizing Single-Cell Sequencing Technology to Investigate Tumor Immune Microenvironment in Epithelial Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 654-658. |
[10] | HUANG Mo-ya, ZHAO Ya-qian, HE Yin-fang. Progress in the Diagnosis and Treatment of Pregnancy Complicated by Krukenberg Tumor [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 531-535. |
[11] | ZHANG Jian-nan, GUO Xin, GUO Nan, NING Wen-ting, YU Hong-xin, SHANG Hai-xia. Application of Microfluidic Technology in Ovarian Cancer Disease Modeling, Drug Evaluation, and Precision Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 560-565. |
[12] | BAI Yao-jun, HU Xiao-hong, LI Hong-li, LIU Chang. Research Progress on Lymphocyte Activation Gene-3 in Gynecological Tumors [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 566-571. |
[13] | JIN Xiao-lei, XU Fei-xue. Five Cases of Diagnosis and Treatment of Ovarian Brenner Tumors [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 578-583. |
[14] | CHEN Zhi-wei, LIU Lin. A Case of Ovarian Malignant Tumor with SMARCA4 Gene Deletion [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 584-587. |
[15] | SU Hai-qi, LI Lei. Advances in Methylation Detection for Ovarian Cancer Screening and Diagnosis [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 366-369. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||