
Journal of International Obstetrics and Gynecology ›› 2025, Vol. 52 ›› Issue (4): 431-438.doi: 10.12280/gjfckx.20250162
• Research on Gynecological Malignancies:Original Article • Previous Articles Next Articles
CHENG Xiao-ran, ZHAO Dan, NIU Cheng-zhi(
)
Received:2025-02-24
Published:2025-08-15
Online:2025-09-08
Contact:
NIU Cheng-zhi, E-mail: CHENG Xiao-ran, ZHAO Dan, NIU Cheng-zhi. Machine Learning Diagnostic Model for Ovarian Malignancies Based on Laboratory Data[J]. Journal of International Obstetrics and Gynecology, 2025, 52(4): 431-438.
Add to citation manager EndNote|Ris|BibTeX
| 变量名称 | 训练集(n=7 317) | 测试集(n=3 135) | Z或χ2 | P |
|---|---|---|---|---|
| 基本特征 | ||||
| 年龄(岁) | 49.5(39.5,58.2) | 49.6(40.2,58.7) | 0.579 | 0.562 |
| 肿瘤直径(cm) | 6.3(4.1,8.9) | 6.1(4.2,9.0) | 0.422 | 0.671 |
| 恶性肿瘤类型 | 0.050 | 0.823 | ||
| 上皮性 | 2 298(94.8) | 988(95.0) | ||
| 非上皮性 | 127(5.2) | 52(5.0) | ||
| 良性肿瘤类型 | 0.051 | 0.975 | ||
| 浆液性囊腺瘤 | 2 600(53.1) | 1 115(53.2) | ||
| 黏液性囊腺瘤 | 1 450(29.6) | 615(29.4) | ||
| 其他类型 | 842(17.2) | 365(17.4) | ||
| 实验室检查指标 | ||||
| CA125(U/mL) | 24.31(12.82,71.20) | 23.60(12.90,67.30) | 0.733 | 0.464 |
| CA15-3(U/mL) | 9.37(6.30,15.68) | 9.26(6.30,14.80) | 1.195 | 0.232 |
| CA19-9(U/mL) | 12.85(6.98,25.40) | 13.10(7.04,24.59) | 0.457 | 0.648 |
| CA724(U/mL) | 2.30(1.50,6.04) | 2.35(1.50,6.36) | 0.716 | 0.474 |
| 甲胎蛋白(ng/mL) | 2.24(1.52,3.34) | 2.22(1.52,3.30) | 0.006 | 0.996 |
| HE4(pmol/L) | 53.10(44.70,72.22) | 53.00(44.80,69.52) | 0.325 | 0.745 |
| 直接胆红素(μmol/L) | 3.40(2.60,4.50) | 3.40(2.60,4.50) | 0.483 | 0.629 |
| 间接胆红素(μmol/L) | 4.10(2.80,5.90) | 4.10(2.80,5.80) | 0.962 | 0.336 |
| 总胆红素(μmol/L) | 7.59(5.50,10.40) | 7.60(5.50,10.20) | 0.671 | 0.502 |
| 白蛋白(g/L) | 42.20(39.70,44.70) | 42.30(39.80,44.70) | 1.458 | 0.145 |
| 球蛋白(g/L) | 25.70(23.10,28.90) | 25.70(23.10,29.10) | 0.616 | 0.538 |
| 总蛋白(g/L) | 67.90(64.20,72.00) | 68.10(64.30,72.10) | 1.474 | 0.141 |
| 乳酸脱氢酶(U/L) | 184.00(157.00,220.00) | 184.00(156.50,221.00) | 0.228 | 0.820 |
| 肾小球滤过率[mL/(min·1.73 m2)] | 113.28(102.05,122.24) | 113.03(102.25,122.42) | 0.292 | 0.771 |
| 尿酸(μmol/L) | 249.00(211.00,298.00) | 248.00(210.00,295.00) | 1.186 | 0.235 |
| 空腹血糖(mmol/L) | 4.57(4.23,5.00) | 4.57(4.23,4.96) | 0.525 | 0.599 |
| 中性粒细胞百分数(%) | 57.90(51.20,65.90) | 58.00(50.80,65.75) | 0.390 | 0.697 |
| 中性粒细胞绝对值(×109/L) | 3.28(2.48,4.39) | 3.28(2.49,4.39) | 0.104 | 0.917 |
| 嗜酸性粒细胞百分数(%) | 1.50(0.80,2.40) | 1.50(0.80,2.40) | 0.233 | 0.816 |
| 嗜酸性粒细胞绝对值(×109/L) | 0.08(0.05,0.14) | 0.08(0.05,0.14) | 0.012 | 0.991 |
| 嗜碱性粒细胞百分数(%) | 0.40(0.30,0.60) | 0.40(0.30,0.60) | 0.245 | 0.807 |
| 嗜碱性粒细胞绝对值(×109/L) | 0.03(0.02,0.03) | 0.03(0.02,0.03) | 0.893 | 0.372 |
| 淋巴细胞百分数(%) | 32.50(25.00,38.90) | 32.60(25.20,39.00) | 0.592 | 0.554 |
| 淋巴细胞绝对值(×109/L) | 1.77(1.37,2.21) | 1.77(1.38,2.23) | 0.558 | 0.577 |
| 血小板计数(×109/L) | 243.00(200.00,294.00) | 249.00(203.00,299.00) | 2.680 | 0.007 |
| 血小板压积(%) | 0.23(0.19,0.27) | 0.23(0.19,0.27) | 2.400 | 0.016 |
| 平均红细胞血红蛋白含量(pg) | 29.90(28.50,31.04) | 29.80(28.40,31.00) | 1.943 | 0.052 |
| 平均红细胞血红蛋白浓度(g/L) | 330.00(323.00,336.00) | 329.00(323.00,335.75) | 2.238 | 0.025 |
| 平均红细胞体积(fL) | 90.20(86.70,93.40) | 90.11(86.10,93.34) | 1.585 | 0.113 |
| 白细胞计数(×109/L) | 5.74(4.70,7.10) | 5.76(4.72,7.03) | 0.098 | 0.922 |
| 酸碱度 | 5.74(5.10,6.38) | 5.73(5.10,6.36) | 0.789 | 0.410 |
| D-二聚体(mg/L) | 0.19(0.08,0.42) | 0.19(0.08,0.42) | 0.628 | 0.530 |
| 纤维蛋白原(g/L) | 2.74(2.31,3.30) | 2.74(2.33,3.29) | 0.023 | 0.982 |
| 黄体生成素(U/L) | 10.20(5.80,22.30) | 10.16(5.78,22.30) | 0.132 | 0.895 |
| 卵泡刺激素(U/L) | 6.59(4.36,22.00) | 6.52(4.28,21.30) | 0.485 | 0.627 |
| 雌二醇(pg/mL) | 61.50(23.80,126.00) | 65.50(26.15,131.90) | 2.190 | 0.029 |
| 孕酮(ng/mL) | 0.33(0.14,1.28) | 0.33(0.14,1.41) | 0.097 | 0.923 |
| 睾酮(ng/mL) | 0.24(0.14,0.37) | 0.24(0.14,0.37) | 1.039 | 0.299 |
| 催乳素(ng/mL) | 27.35(19.20,40.10) | 27.60(19.57,40.60) | 0.682 | 0.496 |
| 变量名称 | 训练集(n=7 317) | 测试集(n=3 135) | Z或χ2 | P |
|---|---|---|---|---|
| 基本特征 | ||||
| 年龄(岁) | 49.5(39.5,58.2) | 49.6(40.2,58.7) | 0.579 | 0.562 |
| 肿瘤直径(cm) | 6.3(4.1,8.9) | 6.1(4.2,9.0) | 0.422 | 0.671 |
| 恶性肿瘤类型 | 0.050 | 0.823 | ||
| 上皮性 | 2 298(94.8) | 988(95.0) | ||
| 非上皮性 | 127(5.2) | 52(5.0) | ||
| 良性肿瘤类型 | 0.051 | 0.975 | ||
| 浆液性囊腺瘤 | 2 600(53.1) | 1 115(53.2) | ||
| 黏液性囊腺瘤 | 1 450(29.6) | 615(29.4) | ||
| 其他类型 | 842(17.2) | 365(17.4) | ||
| 实验室检查指标 | ||||
| CA125(U/mL) | 24.31(12.82,71.20) | 23.60(12.90,67.30) | 0.733 | 0.464 |
| CA15-3(U/mL) | 9.37(6.30,15.68) | 9.26(6.30,14.80) | 1.195 | 0.232 |
| CA19-9(U/mL) | 12.85(6.98,25.40) | 13.10(7.04,24.59) | 0.457 | 0.648 |
| CA724(U/mL) | 2.30(1.50,6.04) | 2.35(1.50,6.36) | 0.716 | 0.474 |
| 甲胎蛋白(ng/mL) | 2.24(1.52,3.34) | 2.22(1.52,3.30) | 0.006 | 0.996 |
| HE4(pmol/L) | 53.10(44.70,72.22) | 53.00(44.80,69.52) | 0.325 | 0.745 |
| 直接胆红素(μmol/L) | 3.40(2.60,4.50) | 3.40(2.60,4.50) | 0.483 | 0.629 |
| 间接胆红素(μmol/L) | 4.10(2.80,5.90) | 4.10(2.80,5.80) | 0.962 | 0.336 |
| 总胆红素(μmol/L) | 7.59(5.50,10.40) | 7.60(5.50,10.20) | 0.671 | 0.502 |
| 白蛋白(g/L) | 42.20(39.70,44.70) | 42.30(39.80,44.70) | 1.458 | 0.145 |
| 球蛋白(g/L) | 25.70(23.10,28.90) | 25.70(23.10,29.10) | 0.616 | 0.538 |
| 总蛋白(g/L) | 67.90(64.20,72.00) | 68.10(64.30,72.10) | 1.474 | 0.141 |
| 乳酸脱氢酶(U/L) | 184.00(157.00,220.00) | 184.00(156.50,221.00) | 0.228 | 0.820 |
| 肾小球滤过率[mL/(min·1.73 m2)] | 113.28(102.05,122.24) | 113.03(102.25,122.42) | 0.292 | 0.771 |
| 尿酸(μmol/L) | 249.00(211.00,298.00) | 248.00(210.00,295.00) | 1.186 | 0.235 |
| 空腹血糖(mmol/L) | 4.57(4.23,5.00) | 4.57(4.23,4.96) | 0.525 | 0.599 |
| 中性粒细胞百分数(%) | 57.90(51.20,65.90) | 58.00(50.80,65.75) | 0.390 | 0.697 |
| 中性粒细胞绝对值(×109/L) | 3.28(2.48,4.39) | 3.28(2.49,4.39) | 0.104 | 0.917 |
| 嗜酸性粒细胞百分数(%) | 1.50(0.80,2.40) | 1.50(0.80,2.40) | 0.233 | 0.816 |
| 嗜酸性粒细胞绝对值(×109/L) | 0.08(0.05,0.14) | 0.08(0.05,0.14) | 0.012 | 0.991 |
| 嗜碱性粒细胞百分数(%) | 0.40(0.30,0.60) | 0.40(0.30,0.60) | 0.245 | 0.807 |
| 嗜碱性粒细胞绝对值(×109/L) | 0.03(0.02,0.03) | 0.03(0.02,0.03) | 0.893 | 0.372 |
| 淋巴细胞百分数(%) | 32.50(25.00,38.90) | 32.60(25.20,39.00) | 0.592 | 0.554 |
| 淋巴细胞绝对值(×109/L) | 1.77(1.37,2.21) | 1.77(1.38,2.23) | 0.558 | 0.577 |
| 血小板计数(×109/L) | 243.00(200.00,294.00) | 249.00(203.00,299.00) | 2.680 | 0.007 |
| 血小板压积(%) | 0.23(0.19,0.27) | 0.23(0.19,0.27) | 2.400 | 0.016 |
| 平均红细胞血红蛋白含量(pg) | 29.90(28.50,31.04) | 29.80(28.40,31.00) | 1.943 | 0.052 |
| 平均红细胞血红蛋白浓度(g/L) | 330.00(323.00,336.00) | 329.00(323.00,335.75) | 2.238 | 0.025 |
| 平均红细胞体积(fL) | 90.20(86.70,93.40) | 90.11(86.10,93.34) | 1.585 | 0.113 |
| 白细胞计数(×109/L) | 5.74(4.70,7.10) | 5.76(4.72,7.03) | 0.098 | 0.922 |
| 酸碱度 | 5.74(5.10,6.38) | 5.73(5.10,6.36) | 0.789 | 0.410 |
| D-二聚体(mg/L) | 0.19(0.08,0.42) | 0.19(0.08,0.42) | 0.628 | 0.530 |
| 纤维蛋白原(g/L) | 2.74(2.31,3.30) | 2.74(2.33,3.29) | 0.023 | 0.982 |
| 黄体生成素(U/L) | 10.20(5.80,22.30) | 10.16(5.78,22.30) | 0.132 | 0.895 |
| 卵泡刺激素(U/L) | 6.59(4.36,22.00) | 6.52(4.28,21.30) | 0.485 | 0.627 |
| 雌二醇(pg/mL) | 61.50(23.80,126.00) | 65.50(26.15,131.90) | 2.190 | 0.029 |
| 孕酮(ng/mL) | 0.33(0.14,1.28) | 0.33(0.14,1.41) | 0.097 | 0.923 |
| 睾酮(ng/mL) | 0.24(0.14,0.37) | 0.24(0.14,0.37) | 1.039 | 0.299 |
| 催乳素(ng/mL) | 27.35(19.20,40.10) | 27.60(19.57,40.60) | 0.682 | 0.496 |
| 特征名称 | Boruta重要性 (Z分数) | Lasso重要性 (系数绝对值) |
|---|---|---|
| HE4 | 63.053 | 0.995 |
| CA15-3 | 66.490 | 1.030 |
| CA19-9 | 10.487 | 0.250 |
| CA724 | 37.632 | 0.805 |
| CA125 | 31.711 | 0.030 |
| 甲胎蛋白 | 22.284 | 2.510 |
| D-二聚体 | 35.779 | 0.080 |
| 纤维蛋白原 | 38.145 | 0.565 |
| 白蛋白 | 19.365 | 0.412 |
| 乳酸脱氢酶 | 56.524 | 1.327 |
| 中性粒细胞百分比 | 11.157 | 0.897 |
| 中性粒细胞绝对值 | 18.444 | 0.696 |
| 淋巴细胞百分比 | 11.604 | 0.399 |
| 淋巴细胞绝对值 | 22.300 | 0.789 |
| 血小板计数 | 17.128 | 0.935 |
| 特征名称 | Boruta重要性 (Z分数) | Lasso重要性 (系数绝对值) |
|---|---|---|
| HE4 | 63.053 | 0.995 |
| CA15-3 | 66.490 | 1.030 |
| CA19-9 | 10.487 | 0.250 |
| CA724 | 37.632 | 0.805 |
| CA125 | 31.711 | 0.030 |
| 甲胎蛋白 | 22.284 | 2.510 |
| D-二聚体 | 35.779 | 0.080 |
| 纤维蛋白原 | 38.145 | 0.565 |
| 白蛋白 | 19.365 | 0.412 |
| 乳酸脱氢酶 | 56.524 | 1.327 |
| 中性粒细胞百分比 | 11.157 | 0.897 |
| 中性粒细胞绝对值 | 18.444 | 0.696 |
| 淋巴细胞百分比 | 11.604 | 0.399 |
| 淋巴细胞绝对值 | 22.300 | 0.789 |
| 血小板计数 | 17.128 | 0.935 |
| 模型 | 数据集 | 准确率 | 精确率 | 召回率 | F1分数 | AUC |
|---|---|---|---|---|---|---|
| 逻辑回归 | 训练集 | 0.841 | 0.860 | 0.621 | 0.721 | 0.903 |
| 测试集 | 0.846 | 0.846 | 0.644 | 0.731 | 0.905 | |
| 随机森林 | 训练集 | 0.836 | 0.845 | 0.608 | 0.707 | 0.916 |
| 测试集 | 0.872 | 0.841 | 0.749 | 0.792 | 0.924 | |
| 支持向量机 | 训练集 | 0.863 | 0.857 | 0.703 | 0.772 | 0.913 |
| 测试集 | 0.860 | 0.827 | 0.721 | 0.771 | 0.917 | |
| 梯度提升决策树 | 训练集 | 0.854 | 0.856 | 0.674 | 0.754 | 0.919 |
| 测试集 | 0.857 | 0.849 | 0.685 | 0.758 | 0.915 |
| 模型 | 数据集 | 准确率 | 精确率 | 召回率 | F1分数 | AUC |
|---|---|---|---|---|---|---|
| 逻辑回归 | 训练集 | 0.841 | 0.860 | 0.621 | 0.721 | 0.903 |
| 测试集 | 0.846 | 0.846 | 0.644 | 0.731 | 0.905 | |
| 随机森林 | 训练集 | 0.836 | 0.845 | 0.608 | 0.707 | 0.916 |
| 测试集 | 0.872 | 0.841 | 0.749 | 0.792 | 0.924 | |
| 支持向量机 | 训练集 | 0.863 | 0.857 | 0.703 | 0.772 | 0.913 |
| 测试集 | 0.860 | 0.827 | 0.721 | 0.771 | 0.917 | |
| 梯度提升决策树 | 训练集 | 0.854 | 0.856 | 0.674 | 0.754 | 0.919 |
| 测试集 | 0.857 | 0.849 | 0.685 | 0.758 | 0.915 |
| [1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3):229-263. doi: 10.3322/caac.21834. |
| [2] | Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024[J]. CA Cancer J Clin, 2024, 74(1):12-49. doi: 10.3322/caac.21820. |
| [3] | Konstantinopoulos PA, Matulonis UA. Clinical and translational advances in ovarian cancer therapy[J]. Nat Cancer, 2023, 4(9):1239-1257. doi: 10.1038/s43018-023-00617-9. |
| [4] | Tang ZP, Ma Z, He Y, et al. Ultrasound-based radiomics for predicting different pathological subtypes of epithelial ovarian cancer before surgery[J]. BMC Med Imaging, 2022, 22(1):147. doi: 10.1186/s12880-022-00879-2. |
| [5] | Charkhchi P, Cybulski C, Gronwald J, et al. CA125 and Ovarian Cancer: A Comprehensive Review[J]. Cancers (Basel), 2020, 12(12): 3730. doi: 10.3390/cancers12123730. |
| [6] | Liu Z, Wu J, Wang X, et al. Multivariate logistic regression analysis of the correlation between five biomarkers and ovarian cancer in patients with intermediate-risk: A prospective cross-sectional study[J]. Front Cell Dev Biol, 2022, 10:876071. doi: 10.3389/fcell.2022.876071. |
| [7] | Zhang R, Siu M, Ngan H, et al. Molecular Biomarkers for the Early Detection of Ovarian Cancer[J]. Int J Mol Sci, 2022, 23(19):12041. doi: 10.3390/ijms231912041. |
| [8] | Dupré A, Malik HZ. Inflammation and cancer: What a surgical oncologist should know[J]. Eur J Surg Oncol, 2018, 44(5):566-570. doi: 10.1016/j.ejso.2018.02.209. |
| [9] |
Guo Y, Jiang T, Ouyang L, et al. A novel diagnostic nomogram based on serological and ultrasound findings for preoperative prediction of malignancy in patients with ovarian masses[J]. Gynecol Oncol, 2021, 160(3):704-712. doi: 10.1016/j.ygyno.2020.12.006.
pmid: 33357959 |
| [10] |
Kandalaft LE, Dangaj Laniti D, Coukos G. Immunobiology of high-grade serous ovarian cancer: lessons for clinical translation[J]. Nat Rev Cancer, 2022, 22(11):640-656. doi: 10.1038/s41568-022-00503-z.
pmid: 36109621 |
| [11] |
Gao Y, Cai GY, Fang W, et al. Machine learning based early warning system enables accurate mortality risk prediction for COVID-19[J]. Nat Commun, 2020, 11(1):5033. doi: 10.1038/s41467-020-18684-2.
pmid: 33024092 |
| [12] |
Sidey-Gibbons J, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction[J]. BMC Med Res Methodol, 2019, 19(1):64. doi: 10.1186/s12874-019-0681-4.
pmid: 30890124 |
| [13] | Anastasi E, Farina A, Granato T, et al. Recent Insight about HE4 Role in Ovarian Cancer Oncogenesis[J]. Int J Mol Sci, 2023, 24(13):10479. doi: 10.3390/ijms241310479. |
| [14] |
Braicu EI, Krause CL, Torsten U, et al. HE4 as a serum biomarker for the diagnosis of pelvic masses: a prospective, multicenter study in 965 patients[J]. BMC Cancer, 2022, 22(1):831. doi: 10.1186/s12885-022-09887-5.
pmid: 35907794 |
| [15] | Matsas A, Stefanoudakis D, Troupis T, et al. Tumor Markers and Their Diagnostic Significance in Ovarian Cancer[J]. Life(Basel), 2023, 13(8):1689. doi: 10.3390/life13081689. |
| [16] | 刘伟, 张丽虹, 曲玉清, 等. 卵巢混合性生殖细胞肿瘤病理特征及诊断分析[J]. 中国临床新医学, 2020, 13(10):1031-1035. doi: 10.3969/j.issn.1674-3806.2020.10.18. |
| [17] |
Hu Q, Hada A, Han L. Platelet count as a biomarker for monitoring treatment response and disease recurrence in recurrent epithelial ovarian cancer[J]. J Ovarian Res, 2020, 13(1):78. doi: 10.1186/s13048-020-00682-z.
pmid: 32682445 |
| [18] |
Hinshaw DC, Shevde LA. The Tumor Microenvironment Innately Modulates Cancer Progression[J]. Cancer Res, 2019, 79(18):4557-4566. doi: 10.1158/0008-5472.CAN-18-3962.
pmid: 31350295 |
| [19] | 黄利华, 姜慧英, 刘芳芳, 等. 糖类抗原125及血小板与淋巴细胞比值早期诊断卵巢癌的应用价值[J]. 重庆医学, 2021, 50(23): 3978-3981. doi: 10.3969/j.issn.1671-8348.2021.23.005. |
| [20] |
Karonidis A, Mantzourani M, Gogas H, et al. Serum S100B levels correlate with stage, N status, mitotic rate and disease outcome in melanoma patients independent to LDH[J]. J Buon, 2017, 22(5):1296-1302.
pmid: 29135116 |
| [21] | Cai G, Huang F, Gao Y, et al. Artificial intelligence-based models enabling accurate diagnosis of ovarian cancer using laboratory tests in China: a multicentre, retrospective cohort study[J]. Lancet Digit Health, 2024, 6(3): e176-e186. doi: 10.1016/S2589-7500(23)00245-5. |
| [1] | ZHOU Ling-ling, SONG Jian-dong, Sarina . Research Progress of LncRNA HOTAIR in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(5): 481-485. |
| [2] | QIN Chen, ZHANG Wei, LI Li. Role of Lipid Metabolism Reprogramming in the Progression and Drug Resistance of Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(5): 492-497. |
| [3] | ZHU Ran-ran, YU Chun-li. A Case of Malignant Mesothelioma of the Pelvic Peritoneum [J]. Journal of International Obstetrics and Gynecology, 2025, 52(5): 508-511. |
| [4] | LI Ya-nan, JIA Ning-rui, WEI Jie, XIAO Peng, JI Jian-wu, PAN Qiao-hong. Ultrasound Diagnosis of A Case of Mature Teratoma of the Placenta [J]. Journal of International Obstetrics and Gynecology, 2025, 52(5): 517-520. |
| [5] | ZHOU Li, ZHANG Hong, LIU Chun-xian, ZHU Ying-jun. A Case of Mayer-Rokitansky-Kuster-Hauser Syndrome Complicated with Adenomyosis in A Rudimentary Uterus [J]. Journal of International Obstetrics and Gynecology, 2025, 52(5): 546-550. |
| [6] | ZHONG Ya-wen, LI Rui-man. A Case of Cushing Syndrome during Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(5): 585-588. |
| [7] | YIN Xiao-qing, ZHANG Jian, XIANG Xue-qin, LI Tao. Interpretation of the 'Diagnosis and Management of Intrahepatic Cholestasis in Pregnancy (2024)' by the Society of Obstetricians and Gynaecologists of Canada [J]. Journal of International Obstetrics and Gynecology, 2025, 52(5): 596-600. |
| [8] | JIANG Yun-xia, LI Jia-hui, LI Xiang, XIA Ming-xue, YANG Shu-li. Application Value of the Cerebral-Placental-Uterine Ratio in Predicting Fetal Growth Restriction [J]. Journal of International Obstetrics and Gynecology, 2025, 52(4): 371-376. |
| [9] | ZHOU Jing, JI Xiu-qing, LI Li, LIU An, WANG Yu-guo, ZHOU Ran, XU Zheng-feng. Prenatal Diagnosis of Y Chromosome Abnormalities in Amniotic Fluid Cells: A Case Series of 7 Cases [J]. Journal of International Obstetrics and Gynecology, 2025, 52(4): 394-401. |
| [10] | YUAN Meng, LI Jun-fen, WU Yue-xiao, YANG Yong-xiu. Primary Ovarian Endometrial Stromal Sarcoma with Rectal Metastasis: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2025, 52(4): 439-442. |
| [11] | ZHANG Ru-wen, CAO Lei. Cervical Adenoid Basal Cell Carcinoma with HPV18-Positivity: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2025, 52(4): 443-446. |
| [12] | ZHANG Shi-xia, YAN Yu, WAN Zi-hua, LIU Chang. A Case Report of Primary Fallopian Tube Carcinosarcoma with Extensive Omental Metastasis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(4): 447-450. |
| [13] | ZHOU Jing, QIAO Feng-chang, ZHANG Cui-ping, LIU An, LI Li, JI Xiu-qing, XU Zheng-feng. Exploration of the Genetic Etiology of Complete Androgen Insensitivity Syndrome Using Whole Exome Sequencing Technology [J]. Journal of International Obstetrics and Gynecology, 2025, 52(3): 262-266. |
| [14] | XU Ruo-lan, YANG Jiang, ZHOU Jin-ting. Application of Microfluidic Technology in the Diagnosis and Treatment of Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(3): 326-330. |
| [15] | FENG Xiao-yu, YAN Li-jun. The Application of Ataxia Telangiectasia Mutated and Rad3-Related Protein in the Pathogenesis, Development and Treatment of Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(3): 331-336. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||