
Journal of International Obstetrics and Gynecology ›› 2025, Vol. 52 ›› Issue (5): 486-491.doi: 10.12280/gjfckx.20241179
• Research on Gynecological Malignancies: Review • Previous Articles Next Articles
JIANG Hao-zhe, SHANG Dan-dan, WANG Shan, WAN Jin-liang△(
)
Received:2024-12-25
Published:2025-10-15
Online:2025-10-16
Contact:
WAN Jin-liang
E-mail:wanjinliang01@163.com
JIANG Hao-zhe, SHANG Dan-dan, WANG Shan, WAN Jin-liang. Research Progress of Glucagon-Like Peptide-1 Receptor Agonist in Endometrial Cancer[J]. Journal of International Obstetrics and Gynecology, 2025, 52(5): 486-491.
Add to citation manager EndNote|Ris|BibTeX
| 文献 | 处理方式 | 研究类型 | 正常EC组织中的表达 | 靶点/通路 | 作用机制 | 作用效果 |
|---|---|---|---|---|---|---|
| Zhang等[ | 艾塞那肽 | 动物实验+ 体外实验 | - | AMPK/mTOR | 上调p-AMPK,p-AMPK抑制mTOR磷酸化,再通过mTOR上调caspase-3 | 促进EC细胞凋亡,抑制肿瘤生长 |
| Kanda等[ | 利拉鲁肽 | 体外实验 | - | AMPK | 上调AMPK、p-AMPK和LC3,下调p62 | 促进细胞凋亡、自噬,抑制癌细胞的生长,阻滞细胞周期 |
| Zhu等[ | 利拉鲁肽 | 体外实验 | - | AMPK、PR、 p-P70S6K | 上调AMPK、PR,下调p-P70S6K | 上调孕酮受体表达;与孕酮协同抑制癌细胞增殖 |
| Zhang等[ | 艾塞那肽 | 体外实验 | - | AMPK、ROS、LDH | 上调AMPK、ROS、LDH | 减弱高血糖诱导的化疗耐药性;增强凋亡、调控细胞周期效果和细胞毒性 |
| 李武等[ | ①艾塞那肽 ②敲低GLP- 1R基因 | 体外实验 | 上调 | - | - | ①艾塞那肽促进EC细胞增殖;②敲低GLP-1R基因可抑制EC细胞活力 |
| Li等[ | 过表达GLP- 1R | 动物实验+ 体外实验 | 下调 | cAMP/PKA | 上调cAMP、PKA | 抑制EC细胞的增殖,促进其凋亡;动物实验中肿瘤体积和质量减小 |
| Li等[ | ①敲除GLP- 1R基因 ②艾塞那肽 | 体外实验 | 上调 | ROS、SLC7A11、FTH1、GPX4 | 下调ROS、SLC7A11、FTH1,上调GPX4(应用艾塞那肽则效果相反) | ①下调GLP-1R使EC细胞活力、迁移和侵袭能力显著降低,诱导细胞周期阻滞、细胞凋亡和铁死亡;②艾塞那肽上调GLP-1R表达 |
| 文献 | 处理方式 | 研究类型 | 正常EC组织中的表达 | 靶点/通路 | 作用机制 | 作用效果 |
|---|---|---|---|---|---|---|
| Zhang等[ | 艾塞那肽 | 动物实验+ 体外实验 | - | AMPK/mTOR | 上调p-AMPK,p-AMPK抑制mTOR磷酸化,再通过mTOR上调caspase-3 | 促进EC细胞凋亡,抑制肿瘤生长 |
| Kanda等[ | 利拉鲁肽 | 体外实验 | - | AMPK | 上调AMPK、p-AMPK和LC3,下调p62 | 促进细胞凋亡、自噬,抑制癌细胞的生长,阻滞细胞周期 |
| Zhu等[ | 利拉鲁肽 | 体外实验 | - | AMPK、PR、 p-P70S6K | 上调AMPK、PR,下调p-P70S6K | 上调孕酮受体表达;与孕酮协同抑制癌细胞增殖 |
| Zhang等[ | 艾塞那肽 | 体外实验 | - | AMPK、ROS、LDH | 上调AMPK、ROS、LDH | 减弱高血糖诱导的化疗耐药性;增强凋亡、调控细胞周期效果和细胞毒性 |
| 李武等[ | ①艾塞那肽 ②敲低GLP- 1R基因 | 体外实验 | 上调 | - | - | ①艾塞那肽促进EC细胞增殖;②敲低GLP-1R基因可抑制EC细胞活力 |
| Li等[ | 过表达GLP- 1R | 动物实验+ 体外实验 | 下调 | cAMP/PKA | 上调cAMP、PKA | 抑制EC细胞的增殖,促进其凋亡;动物实验中肿瘤体积和质量减小 |
| Li等[ | ①敲除GLP- 1R基因 ②艾塞那肽 | 体外实验 | 上调 | ROS、SLC7A11、FTH1、GPX4 | 下调ROS、SLC7A11、FTH1,上调GPX4(应用艾塞那肽则效果相反) | ①下调GLP-1R使EC细胞活力、迁移和侵袭能力显著降低,诱导细胞周期阻滞、细胞凋亡和铁死亡;②艾塞那肽上调GLP-1R表达 |
| [1] | Zhai F, Wang J, Yang W, et al. The E3 Ligases in Cervical Cancer and Endometrial Cancer[J]. Cancers(Basel), 2022, 14(21):5354. doi: 10.3390/cancers14215354. |
| [2] | Wang Y, Zeng X, Tan J, et al. Diabetes mellitus and endometrial carcinoma: Risk factors and etiological links[J]. Medicine(Baltimore), 2022, 101(34):e30299. doi: 10.1097/MD.0000000000030299. |
| [3] |
Saed L, Varse F, Baradaran HR, et al. The effect of diabetes on the risk of endometrial Cancer: an updated a systematic review and meta-analysis[J]. BMC Cancer, 2019, 19(1):527. doi: 10.1186/s12885-019-5748-4.
pmid: 31151429 |
| [4] | Yao H, Zhang A, Li D, et al. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: systematic review and network meta-analysis[J]. BMJ, 2024, 384:e076410. doi: 10.1136/bmj-2023-076410. |
| [5] | Gou Y, Schwartz MW. How should we think about the unprecedented weight loss efficacy of incretin-mimetic drugs?[J]. J Clin Invest, 2023, 133(19):e174597. doi: 10.1172/JCI174597. |
| [6] | Moore PW, Malone K, VanValkenburg D, et al. GLP-1 Agonists for Weight Loss: Pharmacology and Clinical Implications[J]. Adv Ther, 2023, 40(3):723-742. doi: 10.1007/s12325-022-02394-w. |
| [7] | Kopp KO, Glotfelty EJ, Li Y, et al. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment[J]. Pharmacol Res, 2022, 186:106550. doi: 10.1016/j.phrs.2022.106550. |
| [8] | Chen X, Zhao P, Wang W, et al. The Antidepressant Effects of GLP-1 Receptor Agonists: A Systematic Review and Meta-Analysis[J]. Am J Geriatr Psychiatry, 2024, 32(1):117-127. doi: 10.1016/j.jagp.2023.08.010. |
| [9] |
Menghini R, Casagrande V, Rizza S, et al. GLP-1RAs and cardiovascular disease: is the endothelium a relevant platform?[J]. Acta Diabetol, 2023, 60(11):1441-1448. doi: 10.1007/s00592-023-02124-w.
pmid: 37401947 |
| [10] | Wang L, Xu R, Kaelber DC, et al. Glucagon-Like Peptide 1 Receptor Agonists and 13 Obesity-Associated Cancers in Patients With Type 2 Diabetes[J]. JAMA Netw Open, 2024, 7(7):e2421305. doi: 10.1001/jamanetworkopen.2024.21305. |
| [11] |
Zhang Y, Xu F, Liang H, et al. Exenatide inhibits the growth of endometrial cancer Ishikawa xenografts in nude mice[J]. Oncol Rep, 2016, 35(3):1340-1348. doi: 10.3892/or.2015.4476.
pmid: 26648451 |
| [12] |
Kanda R, Hiraike H, Wada-Hiraike O, et al. Expression of the glucagon-like peptide-1 receptor and its role in regulating autophagy in endometrial cancer[J]. BMC Cancer, 2018, 18(1):657. doi: 10.1186/s12885-018-4570-8.
pmid: 29907137 |
| [13] | Zhu XX, Feng ZH, Liu LZ, et al. Liraglutide suppresses the proliferation of endometrial cancer cells through the adenosine 5'-monophosphate (AMP)-activated protein kinase signaling pathway[J]. Chin Med J(Engl), 2021, 134(5):576-578. doi: 10.1097/CM9.0000000000001363. |
| [14] | Zhang Y, Cheng J, Li J, et al. The GLP-1R Agonist Exendin-4 Attenuates Hyperglycemia-Induced Chemoresistance in Human Endometrial Cancer Cells Through ROS-Mediated Mitochondrial Pathway[J]. Front Oncol, 2021, 11:793530. doi: 10.3389/fonc.2021.793530. |
| [15] | 李武, 刘松君, 阮凡, 等. 胰高血糖素样肽1受体在子宫内膜癌中的表达及意义研究[J]. 浙江医学, 2022, 44(19):2039-2043,2048,后插2. doi: 10.12056/j.issn.1006-2785.2022.44.19.2022-1089. |
| [16] | Li W, Gu Y, Liu S, et al. GLP1R inhibits the progression of endometrial carcinoma through activation of cAMP/PKA pathway[J]. J Clin Lab Anal, 2022, 36(10):e24604. doi: 10.1002/jcla.24604. |
| [17] | Li W, Lyu W, Liu S, et al. GLP1R boosts survival, migration and invasion of endometrial cancer cells and protects against ferroptotic cell death[J]. J Obstet Gynaecol, 2024, 44(1):2301324. doi: 10.1080/01443615.2023.2301324. |
| [18] | Gao Y, Jiao Y, Gong X, et al. Role of transcription factors in apoptotic cells clearance[J]. Front Cell Dev Biol, 2023, 11:1110225. doi: 10.3389/fcell.2023.1110225. |
| [19] | Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer[J]. Nat Rev Mol Cell Biol, 2023, 24(8):560-575. doi: 10.1038/s41580-023-00585-z. |
| [20] | Zhang L, Liu H, Xiong W, et al. CircFOXO3 mediates hypoxia-induced autophagy of endometrial stromal cells in endometriosis[J]. FASEB J, 2024, 38(5):e23515. doi: 10.1096/fj.202301654RR. |
| [21] | Devis-Jauregui L, Eritja N, Davis ML, et al. Autophagy in the physiological endometrium and cancer[J]. Autophagy, 2021, 17(5):1077-1095. doi: 10.1080/15548627.2020.1752548. |
| [22] |
Krause GC, Lima KG, Dias HB, et al. Liraglutide, a glucagon-like peptide-1 analog, induce autophagy and senescence in HepG2 cells[J]. Eur J Pharmacol, 2017, 809:32-41. doi: 10.1016/j.ejphar.2017.05.015.
pmid: 28501576 |
| [23] | Huang J, Chen Z, Wu Z, et al. Geniposide stimulates autophagy by activating the GLP-1R/AMPK/mTOR signaling in osteoarthritis chondrocytes[J]. Biomed Pharmacother, 2023, 167:115595. doi: 10.1016/j.biopha.2023.115595. |
| [24] | Li M, Jin S, Zhu X, et al. The role of ferroptosis in central nervous system damage diseases[J]. PeerJ, 2024, 12:e16741. doi: 10.7717/peerj.16741. |
| [25] |
Lei G, Zhuang L, Gan B. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions[J]. Cancer Cell, 2024, 42(4):513-534. doi: 10.1016/j.ccell.2024.03.011.
pmid: 38593779 |
| [26] | Zhang YY, Ni ZJ, Elam E, et al. Juglone, a novel activator of ferroptosis, induces cell death in endometrial carcinoma Ishikawa cells[J]. Food Funct, 2021, 12(11):4947-4959. doi: 10.1039/d1fo00790d. |
| [27] | Murakami H, Hayashi M, Terada S, et al. Medroxyprogesterone acetate-resistant endometrial cancer cells are susceptible to ferroptosis inducers[J]. Life Sci, 2023, 325:121753. doi: 10.1016/j.lfs.2023.121753. |
| [28] | Shen R, Qin S, Lv Y, et al. GLP-1 receptor agonist attenuates tubular cell ferroptosis in diabetes via enhancing AMPK-fatty acid metabolism pathway through macropinocytosis[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(4): 167060. doi: 10.1016/j.bbadis.2024.167060. |
| [29] |
Jamasbi E, Hamelian M, Hossain MA, et al. The cell cycle, cancer development and therapy[J]. Mol Biol Rep, 2022, 49(11):10875-10883. doi: 10.1007/s11033-022-07788-1.
pmid: 35931874 |
| [30] | Alanteet AA, Attia HA, Shaheen S, et al. Anti-Proliferative Activity of Glucagon-Like Peptide-1 Receptor Agonist on Obesity-Associated Breast Cancer: The Impact on Modulating Adipokines' Expression in Adipocytes and Cancer Cells[J]. Dose Response, 2021, 19(1):1559325821995651. doi: 10.1177/1559325821995651. |
| [31] | Chen D, Liang H, Huang L, et al. Liraglutide enhances the effect of checkpoint blockade in lung and liver cancers through the inhibition of neutrophil extracellular traps[J]. FEBS Open Bio, 2024, 14(8):1365-1377. doi: 10.1002/2211-5463.13499. |
| [32] | Tong G, Peng T, Chen Y, et al. Effects of GLP-1 Receptor Agonists on Biological Behavior of Colorectal Cancer Cells by Regulating PI3K/AKT/mTOR Signaling Pathway[J]. Front Pharmacol, 2022, 13:901559. doi: 10.3389/fphar.2022.901559. |
| [33] | Sun G, Tian J, Xiao Y, et al. Circular RNA circ_0005667 promotes cisplatin resistance of endometrial carcinoma cells by regulating IGF2BP1 through miR-145-5p[J]. Anticancer Drugs, 2023, 34(7):816-826. doi: 10.1097/CAD.0000000000001479. |
| [34] | Qiu J, Zheng Q, Meng X. Hyperglycemia and Chemoresistance in Breast Cancer: From Cellular Mechanisms to Treatment Response[J]. Front Oncol, 2021, 11:628359. doi: 10.3389/fonc.2021.628359. |
| [35] | Liu Z, Hayashi H, Matsumura K, et al. Hyperglycaemia induces metabolic reprogramming into a glycolytic phenotype and promotes epithelial-mesenchymal transitions via YAP/TAZ-Hedgehog signalling axis in pancreatic cancer[J]. Br J Cancer, 2023, 128(5):844-856. doi: 10.1038/s41416-022-02106-9. |
| [36] | Cheng HC, Chang TK, Su WC, et al. Narrative review of the influence of diabetes mellitus and hyperglycemia on colorectal cancer risk and oncological outcomes[J]. Transl Oncol, 2021, 14(7):101089. doi:10.1016/j.tranon.2021.101089. |
| [37] |
Shahraki S, Bahraini F, Mesbahzadeh B, et al. Glucose increases proliferation and chemoresistance in chronic myeloid leukemia via decreasing antioxidant Properties of ω-3 polyunsaturated fatty acids in the presence of Iron[J]. Mol Biol Rep, 2023, 50(12):10315-10324. doi: 10.1007/s11033-023-08891-7.
pmid: 37971569 |
| [1] | ZHOU Ling-ling, SONG Jian-dong, Sarina . Research Progress of LncRNA HOTAIR in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(5): 481-485. |
| [2] | CHEN Yi-bing, TU Jing-yan, TANG Yi-ming, LIN Xiao-yang, LIU Yan-duo, HAN Qing. Research Progress on Serum Iron and Ferroptosis in Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2025, 52(4): 361-365. |
| [3] | YANG Yao-yao, WANG Yong-hong. Research Progress on the Mechanism of Autophagy in the Pathogenesis of Preeclampsia and Related Treatments [J]. Journal of International Obstetrics and Gynecology, 2025, 52(4): 366-370. |
| [4] | SI Cai-xia, CHENG Yue, SUN Ren-lian, XU Fei-xue. Research Progress on m6A Methylation in Endometrial Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(4): 414-419. |
| [5] | MA Ling, LI Ya-xi, ZHAO Min, WANG Jing, LI Hong-li. Progress on the Relationship between Apoptosis and Adverse Pregnancy Outcomes [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 121-126. |
| [6] | BAI Yao-jun, WANG Si-yao, LING Fei-fei, ZHANG Sen-huai, LI Hong-li, LIU Chang. Progress of Trop-2 and Targeted Trop-2 Antibody-Coupled Drugs in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 1-7. |
| [7] | YANG Li, YANG Jing, YE Erdengqieqieke, HAN Rui, LA Xiao-lin. The Effect of BCL6 on Proliferation, Apoptosis, Invasion, and Migration of HTR-8/SVneo Trophoblast Cells [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 659-663. |
| [8] | LI Dong-nan, XIANG Rong, WANG Hai-yang, SUN Miao. Regulatory Mechanism of Ovarian Granulosa Cell Apoptosis in Polycystic Ovary Syndrome with Progress in Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 692-697. |
| [9] | GAO Yi-wei, LUO Wei, WU Qiong, MU Yu-lan. The Relationship Between Ferroptosis and Premature Ovarian Insufficiency [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 497-502. |
| [10] | HE Qing, HU Hong-bo. Application and Prospects of Artificial Intelligence in the Diagnosis and Treatment of Endometrial Cancer [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 572-577. |
| [11] | DING Yi-ling, LU Di, SONG Dian-rong. Research Progress on the Mechanism of Tumor Resistance in Polyploid Giant Cancer Cells [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 361-365. |
| [12] | ZHANG Yi-tian, LI Xiao-li. The Role and Treatment of Mitochondria in Endometrial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 375-379. |
| [13] | YAN Hai-yan, YIN Qing-qing, WANG Mei, ZHANG Ai, YE Wen-feng, LI Tian-tian. Broad Ligament Endometrioid Carcinoma: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 388-391. |
| [14] | GUO Xi, WEI Jia, YANG Yong-xiu. Hormonal Pathways and Regulatory Factors That Lead to Endometrial Disease [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 395-400. |
| [15] | SI Jing-wen, YU Xiu-jie, SHEN Yan. The Impact of the 2023 FIGO Staging Update of Endometrial Carcinoma on the Content of Pathological Diagnosis [J]. Journal of International Obstetrics and Gynecology, 2024, 51(3): 241-246. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||