Journal of International Obstetrics and Gynecology ›› 2021, Vol. 48 ›› Issue (4): 403-408.doi: 10.12280/gjfckx.20200838
• Gynecological Disease & Related Research Review • Previous Articles Next Articles
LI Wei, FAN Rui-feng, XU Qiu-hong, CHEN Jing, WU Xiao-ke, KUANG Hong-ying, WANG Ying-ji, LI Yan△()
Received:
2020-09-08
Published:
2021-08-15
Online:
2021-09-01
Contact:
LI Yan
E-mail:liyantcm@163.com
LI Wei, FAN Rui-feng, XU Qiu-hong, CHEN Jing, WU Xiao-ke, KUANG Hong-ying, WANG Ying-ji, LI Yan. Mitochondrial Dynamics of Ovarian Cells and Polycystic Ovary Syndrome[J]. Journal of International Obstetrics and Gynecology, 2021, 48(4): 403-408.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Banaszewska B, Pawelczyk L, Spaczynski R. Current and future aspects of several adjunctive treatment strategies in polycystic ovary syndrome[J]. Reprod Biol, 2019, 19(4):309-315. doi: 10.1016/j.repbio.2019.09.006.
doi: S1642-431X(19)30206-2 pmid: 31606349 |
[2] |
Ilie IR. Advances in PCOS Pathogenesis and Progression-Mitochondrial Mutations and Dysfunction[J]. Adv Clin Chem, 2018, 86(3):127-155. doi: 10.1016/bs.acc.2018.05.003.
doi: 10.1016/bs.acc.2018.05.003 |
[3] |
Salehi R, Mazier HL, Nivet AL, et al. Ovarian mitochondrial dynamics and cell fate regulation in an androgen-induced rat model of polycystic ovarian syndrome[J]. Sci Rep, 2020, 10(1):1021. doi: 10.1038/s41598-020-57672-w.
doi: 10.1038/s41598-020-57672-w pmid: 31974436 |
[4] |
Mitra K, Rikhy R, Lilly M, et al. DRP1-dependent mitochondrial fission initiates follicle cell differentiation during Drosophila oogenesis[J]. J Cell Biol, 2012, 197(4):487-497. doi: 10.1083/jcb.201110058.
doi: 10.1083/jcb.201110058 |
[5] |
Zhang M, Bener MB, Jiang Z, et al. Mitofusin 1 is required for female fertility and to maintain ovarian follicular reserve[J]. Cell Death Dis, 2019, 10(8):560. doi: 10.1038/s41419-019-1799-3.
doi: 10.1038/s41419-019-1799-3 pmid: 31332167 |
[6] | 张敏, 杜馨, 李贝贝, 等. 卵母细胞线粒体DNA与胚胎质量的相关性研究进展[J]. 国际生殖健康/计划生育杂志, 2020, 39(6):486-489. |
[7] |
López-Lluch G. Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity[J]. Mech Ageing Dev, 2017, 162:108-121. doi: 10.1016/j.mad.2016.12.005.
doi: S0047-6374(16)30104-X pmid: 27993601 |
[8] |
Udagawa O, Ishihara T, Maeda M, et al. Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles[J]. Curr Biol, 2014, 24(20):2451-2458. doi: 10.1016/j.cub.2014.08.060.
doi: 10.1016/j.cub.2014.08.060 pmid: 25264261 |
[9] |
Luan G, Li G, Ma X, et al. Dexamethasone-Induced Mitochondrial Dysfunction and Insulin Resistance-Study in 3T3-L1 Adipocytes and Mitochondria Isolated from Mouse Liver[J]. Molecules, 2019, 24(10):1982. doi: 10.3390/molecules24101982.
doi: 10.3390/molecules24101982 |
[10] |
Fazakerley DJ, Chaudhuri R, Yang P, et al. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance[J]. Elife, 2018, 7:e32111. doi: 10.7554/eLife.32111.
doi: 10.7554/eLife.32111 |
[11] |
Bañuls C, Rovira-Llopis S, Martinez de Marañon A, et al. Metabolic syndrome enhances endoplasmic reticulum, oxidative stress and leukocyte-endothelium interactions in PCOS[J]. Metabolism, 2017, 71:153-162. doi: 10.1016/j.metabol.2017.02.012.
doi: 10.1016/j.metabol.2017.02.012 |
[12] |
Ding Y, Xia BH, Zhang CJ, et al. Mitochondrial tRNA(Leu(UUR)) C3275T, tRNA(Gln) T4363C and tRNA(Lys) A8343G mutations may be associated with PCOS and metabolic syndrome[J]. Gene, 2018, 642:299-306. doi: 10.1016/j.gene.2017.11.049.
doi: S0378-1119(17)31013-2 pmid: 29155328 |
[13] |
Rogowicz-Frontczak A, Majchrzak A, Zozulińska-Ziółkiewicz D. Insulin resistance in endocrine disorders-treatment options[J]. Endokrynol Pol, 2017, 68(3):334-351. doi: 10.5603/EP.2017.0026.
doi: 10.5603/EP.2017.0026 pmid: 28660991 |
[14] |
Rosenfield RL, Ehrmann DA. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypojournal of PCOS as Functional Ovarian Hyperandrogenism Revisited[J]. Endocr Rev, 2016, 37(5):467-520. doi: 10.1210/er.2015-1104.
doi: 10.1210/er.2015-1104 pmid: 27459230 |
[15] |
Karuputhula NB, Chattopadhyay R, Chakravarty B, et al. Oxidative status in granulosa cells of infertile women undergoing IVF[J]. Syst Biol Reprod Med, 2013, 59(2):91-98. doi: 10.3109/19396368.2012.743197.
doi: 10.3109/19396368.2012.743197 pmid: 23278116 |
[16] |
Jia L, Zeng Y, Hu Y, et al. Homocysteine impairs porcine oocyte quality via deregulation of one-carbon metabolism and hypermethylation of mitochondrial DNA?[J]. Biol Reprod, 2019, 100(4):907-916. doi: 10.1093/biolre/ioy238.
doi: 10.1093/biolre/ioy238 |
[17] |
Randriamboavonjy V, Mann WA, Elgheznawy A, et al. Metformin reduces hyper-reactivity of platelets from patients with polycystic ovary syndrome by improving mitochondrial integrity[J]. Thromb Haemost, 2015, 114(3):569-578. doi: 10.1160/TH14-09-0797.
doi: 10.1160/TH14-09-0797 |
[18] |
Abbade J, Klemetti MM, Farrell A, et al. Increased placental mitochondrial fusion in gestational diabetes mellitus: an adaptive mechanism to optimize feto-placental metabolic homeostasis?[J]. BMJ Open Diabetes Res Care, 2020, 8(1):e000923. doi: 10.1136/bmjdrc-2019-000923.
doi: 10.1136/bmjdrc-2019-000923 |
[19] |
Zimmermann M, Reichert AS. How to get rid of mitochondria: crosstalk and regulation of multiple mitophagy pathways[J]. Biol Chem, 2017, 399(1):29-45. doi: 10.1515/hsz-2017-0206.
doi: 10.1515/hsz-2017-0206 pmid: 28976890 |
[20] |
Atef MM, Abd-Ellatif RN, Emam MN, et al. Therapeutic potential of sodium selenite in letrozole induced polycystic ovary syndrome rat model: Targeting mitochondrial approach (selenium in PCOS)[J]. Arch Biochem Biophys, 2019, 671:245-254. doi: 10.1016/j.abb.2019.06.009.
doi: 10.1016/j.abb.2019.06.009 |
[21] |
Qi L, Liu B, Chen X, et al. Single-Cell Transcriptomic Analysis Reveals Mitochondrial Dynamics in Oocytes of Patients With Polycystic Ovary Syndrome[J]. Front Genet, 2020, 11:396. doi: 10.3389/fgene.2020.00396.
doi: 10.3389/fgene.2020.00396 |
[22] |
Gao T, Zhang X, Zhao J, et al. SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer[J]. Cancer Lett, 2020, 469:89-101. doi: 10.1016/j.canlet.2019.10.029.
doi: 10.1016/j.canlet.2019.10.029 |
[23] |
Yao X, Zhang J, Jing X, et al. Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission[J]. Pharmacol Res, 2019, 139:314-324. doi: 10.1016/j.phrs.2018.09.026.
doi: 10.1016/j.phrs.2018.09.026 |
[24] |
He T, Liu Y, Zhao S, et al. Comprehensive assessment the expression of core elements related to IGFIR/PI3K pathway in granulosa cells of women with polycystic ovary syndrome[J]. Eur J Obstet Gynecol Reprod Biol, 2019, 233:134-140. doi: 10.1016/j.ejogrb.2018.12.010.
doi: 10.1016/j.ejogrb.2018.12.010 |
[25] |
Morita M, Prudent J, Basu K, et al. mTOR Controls Mitochondrial Dynamics and Cell Survival via MTFP1[J]. Mol Cell, 2017, 67(6):922-935.e5. doi: 10.1016/j.molcel.2017.08.013.
doi: 10.1016/j.molcel.2017.08.013 |
[26] |
Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR Signaling in Cancer[J]. Front Oncol, 2014, 4:64. doi: 10.3389/fonc.2014.00064.
doi: 10.3389/fonc.2014.00064 |
[27] |
Song WJ, Shi X, Zhang J, et al. Akt-mTOR Signaling Mediates Abnormalities in the Proliferation and Apoptosis of Ovarian Granulosa Cells in Patients with Polycystic Ovary Syndrome[J]. Gynecol Obstet Invest, 2018, 83(2):124-132. doi: 10.1159/000464351.
doi: 10.1159/000464351 |
[28] |
Yaba A, Demir N. The mechanism of mTOR (mammalian target of rapamycin) in a mouse model of polycystic ovary syndrome (PCOS)[J]. J Ovarian Res, 2012, 5(1):38. doi: 10.1186/1757-2215-5-38.
doi: 10.1186/1757-2215-5-38 |
[29] |
Luo QY, Huo P, Wang LL, et al. The influencing mechanism of mTOR signal pathway mediated by mitofusin-2 in development of follicle[J]. Eur Rev Med Pharmacol Sci, 2018, 22(8):2212-2217. doi: 10.26355/eurrev_201804_14806.
doi: 10.26355/eurrev_201804_14806 |
[30] |
Zhang J, Liu W, Sun X, et al. Inhibition of mTOR Signaling Pathway Delays Follicle Formation in Mice[J]. J Cell Physiol, 2017, 232(3):585-595. doi: 10.1002/jcp.25456.
doi: 10.1002/jcp.25456 pmid: 27301841 |
[31] |
Jamilian M, Samimi M, Mirhosseini N, et al. The influences of vitamin D and omega-3 co-supplementation on clinical, metabolic and genetic parameters in women with polycystic ovary syndrome[J]. J Affect Disord, 2018, 238:32-38. doi: 10.1016/j.jad.2018.05.027.
doi: 10.1016/j.jad.2018.05.027 |
[32] |
Safaei Z, Bakhshalizadeh SH, Nasr Esfahani MH, et al. Effect of Vitamin D3 on Mitochondrial Biogenesis in Granulosa Cells Derived from Polycystic Ovary Syndrome[J]. Int J Fertil Steril, 2020, 14(2):143-149. doi: 10.22074/ijfs.2020.6077.
doi: 10.22074/ijfs.2020.6077 pmid: 32681627 |
[33] |
Kyei G, Sobhani A, Nekonam S, et al. Assessing the effect of MitoQ(10) and Vitamin D3 on ovarian oxidative stress, steroidogenesis and histomorphology in DHEA induced PCOS mouse model[J]. Heliyon, 2020, 6(7):e04279. doi: 10.1016/j.heliyon.2020.e04279.
doi: 10.1016/j.heliyon.2020.e04279 |
[34] |
Cheng H, Gang X, Liu Y, et al. Mitochondrial dysfunction plays a key role in the development of neurodegenerative diseases in diabetes[J]. Am J Physiol Endocrinol Metab, 2020, 318(5):E750-E764. doi: 10.1152/ajpendo.00179.2019.
doi: 10.1152/ajpendo.00179.2019 |
[35] |
Skov V, Glintborg D, Knudsen S, et al. Pioglitazone enhances mitochondrial biogenesis and ribosomal protein biosynjournal in skeletal muscle in polycystic ovary syndrome[J]. PLoS One, 2008, 3(6):e2466. doi: 10.1371/journal.pone.0002466.
doi: 10.1371/journal.pone.0002466 |
[1] | XU Shu-ying, XU Hai-peng, WANG Li-na, ZHANG Yang. Relationship between Zinc and Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 217-221. |
[2] | YAN Hui-bo, ZHANG Lin. Analysis of the Disease Burden and Projections of Polycystic Ovary Syndrome in China and Globally from 1990 to 2021 [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 228-233. |
[3] | QI Dan-dan, ZHU Hai-ying, CAO Hai-ru, ZHANG Yue-min. Mechanisms of Mitochondrial Dysfunction Regulating Ovarian Aging [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 61-65. |
[4] | ZHANG Dong, WANG Zheng, LI Kai, BIAN Wen-li, GAO Zhi-hua. A Case of Severe Spontaneous Ovarian Hyperstimulation Syndrome in Non-Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 79-83. |
[5] | HU Die, REN Jia-jie, LIU Jia-ning, FENG Xiao-ling. Mechanism Study of MAPK Pathway in PCOS and Monomeric Treatment of Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 684-691. |
[6] | LI Dong-nan, XIANG Rong, WANG Hai-yang, SUN Miao. Regulatory Mechanism of Ovarian Granulosa Cell Apoptosis in Polycystic Ovary Syndrome with Progress in Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 692-697. |
[7] | LI Chen-xi, FAN Meng-xiao, WU Lin-ling, DOU Zhen, JIA Jia, SUN Ya-xuan. Advances in Research on Neuroendocrine Disorders Induced by Hyperandrogenism in Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 698-702. |
[8] | ZHANG Yi-tian, LI Xiao-li. The Role and Treatment of Mitochondria in Endometrial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 375-379. |
[9] | WANG Ya-hui, WANG Yan, WANG Yan, PEI Fe. The Etiology of Fetal Growth Restriction and Its Effects on the Long-Term Health of the Child [J]. Journal of International Obstetrics and Gynecology, 2024, 51(2): 152-156. |
[10] | SUN Yi-wen, XIONG Ke, ZHANG Zi-xu, WENG Ya-jing, WANG Yong. The Effect of Bisphenol A on the Pathogenesis of Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 601-605. |
[11] | LI Zhen-ying, SUN Xiao-tong, XING Guang-yang, LI Jing-jing, LIU Ting-ting, ZHANG Yi-fan. Research Progress on Sphingolipid Metabolism and Benign and Malignant Gynecological Diseases [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 649-654. |
[12] | XU Hui, XIE Xiu-zhen. Research Progress of Negative Emotion in Patients with Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 530-534. |
[13] | KOU Li-hui, SONG Dian-rong, GUO Jie. Effects of Negative Emotion on Infertility Patients with Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 535-539. |
[14] | GAO Ya, LU Di, SONG Dian-rong. Role of Anti- Müllerian Hormone in Pathogenesis, Diagnosis and Treatment of Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(5): 540-544. |
[15] | WANG Lei, ZHANG Ning. The Impact of Intestinal Microbiota Imbalance on the Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 256-260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||