Journal of International Obstetrics and Gynecology ›› 2022, Vol. 49 ›› Issue (6): 655-658.doi: 10.12280/gjfckx.2022455
• Obstetric Physiology & Obstetric Disease: Review • Previous Articles Next Articles
Received:
2022-06-07
Published:
2022-12-15
Online:
2023-01-11
Contact:
WANG Yong-hong
E-mail:wangyh19072000@126.com
ZHAO Yu-lin, WANG Yong-hong. The Relationship between mTOR Signaling Pathway and Preeclampsia[J]. Journal of International Obstetrics and Gynecology, 2022, 49(6): 655-658.
[1] |
Li B, Yang H. Comparison of clinical features and pregnancy outcomes in early- and late-onset preeclampsia with HELLP syndrome: a 10-year retrospective study from a tertiary hospital and referral center in China[J]. BMC Pregnancy Childbirth, 2022, 22(1):186. doi: 10.1186/s12884-022-04466-9.
doi: 10.1186/s12884-022-04466-9 |
[2] |
Nazari N, Jafari F, Ghalamfarsa G, et al. The emerging role of microRNA in regulating the mTOR signaling pathway in immune and inflammatory responses[J]. Immunol Cell Biol, 2021, 99(8):814-832. doi: 10.1111/imcb.12477.
doi: 10.1111/imcb.12477 |
[3] |
Mafi S, Mansoori B, Taeb S, et al. mTOR-Mediated Regulation of Immune Responses in Cancer and Tumor Microenvironment[J]. Front Immunol, 2021, 12:774103. doi: 10.3389/fimmu.2021.774103.
doi: 10.3389/fimmu.2021.774103 |
[4] |
Fruman DA, Chiu H, Hopkins BD, et al. The PI3K Pathway in Human Disease[J]. Cell, 2017, 170(4):605-635. doi: 10.1016/j.cell.2017.07.029.
doi: S0092-8674(17)30865-6 pmid: 28802037 |
[5] |
Roudsari NM, Lashgari NA, Momtaz S, et al. Inhibitors of the PI3K/Akt/mTOR Pathway in Prostate Cancer Chemoprevention and Intervention[J]. Pharmaceutics, 2021, 13(8):1195. doi: 10.3390/pharmaceutics13081195.
doi: 10.3390/pharmaceutics13081195 |
[6] |
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer[J]. Semin Cancer Biol, 2021 Jun 25:S1044-579 X(21)00188-7. doi: 10.1016/j.semcancer.2021.06.019. Epub ahead of print.
doi: 10.1016/j.semcancer.2021.06.019 |
[7] |
Aiko Y, Askew DJ, Aramaki S, et al. Differential levels of amino acid transporters System L and ASCT2, and the mTOR protein in placenta of preeclampsia and IUGR[J]. BMC Pregnancy Childbirth, 2014, 14:181. doi: 10.1186/1471-2393-14-181.
doi: 10.1186/1471-2393-14-181 |
[8] |
Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer[J]. Int J Mol Sci, 2012, 13(2):1886-1918. doi: 10.3390/ijms13021886.
doi: 10.3390/ijms13021886 pmid: 22408430 |
[9] |
Park JK, Jeong JW, Kang MY, et al. Inhibition of the PI3K-Akt pathway suppresses sFlt1 expression in human placental hypoxia models in vitro[J]. Placenta, 2010, 31(7):621-629. doi: 10.1016/j.placenta.2010.04.009.
doi: 10.1016/j.placenta.2010.04.009 pmid: 20488538 |
[10] |
Chen J, Yue C, Xu J, et al. Downregulation of receptor tyrosine kinase-like orphan receptor 1 in preeclampsia placenta inhibits human trophoblast cell proliferation, migration, and invasion by PI3K/AKT/mTOR pathway accommodation[J]. Placenta, 2019, 82:17-24. doi: 10.1016/j.placenta.2019.05.002.
doi: S0143-4004(19)30102-X pmid: 31174622 |
[11] |
Baines KJ, Renaud SJ. Transcription Factors That Regulate Trophoblast Development and Function[J]. Prog Mol Biol Transl Sci, 2017, 145:39-88. doi: 10.1016/bs.pmbts.2016.12.003.
doi: 10.1016/bs.pmbts.2016.12.003 |
[12] |
Wang Y, Cheng K, Zhou W, et al. miR-141-5p regulate ATF2 via effecting MAPK1/ERK2 signaling to promote preeclampsia[J]. Biomed Pharmacother, 2019, 115:108953. doi: 10.1016/j.biopha.2019.108953.
doi: 10.1016/j.biopha.2019.108953 |
[13] |
Liu HQ, Wang YH, Wang LL, et al. Predictive Value of Free β-hCG Multiple of the Median for Women with Preeclampsia[J]. Gynecol Obstet Invest, 2015 Aug 26. doi: 10.1159/000433434. Epub ahead of print.
doi: 10.1159/000433434 |
[14] |
Shen H, Jin M, Gu S, et al. CD97 Is Decreased in Preeclamptic Placentas and Promotes Human Trophoblast Invasion Through PI3K/Akt/mTOR Signaling Pathway[J]. Reprod Sci, 2020, 27(8):1553-1561. doi: 10.1007/s43032-020-00183-w.
doi: 10.1007/s43032-020-00183-w pmid: 32430705 |
[15] |
Ling L, Yuan X, Liu X, et al. A novel peptide promotes human trophoblast proliferation and migration through PI3K/Akt/mTOR signaling pathway[J]. Ann Transl Med, 2021, 9(12):981. doi: 10.21037/atm-21-2574.
doi: 10.21037/atm-21-2574 pmid: 34277781 |
[16] |
Li T, Wei S, Fan C, et al. Nesfatin-1 Promotes Proliferation, Migration and Invasion of HTR-8/SVneo Trophoblast Cells and Inhibits Oxidative Stress via Activation of PI3K/AKT/mTOR and AKT/GSK3β Pathway[J]. Reprod Sci, 2021, 28(2):550-561. doi: 10.1007/s43032-020-00324-1.
doi: 10.1007/s43032-020-00324-1 |
[17] |
He C, Shan N, Xu P, et al. Hypoxia-induced Downregulation of SRC-3 Suppresses Trophoblastic Invasion and Migration Through Inhibition of the AKT/mTOR Pathway: Implications for the Pathogenesis of Preeclampsia[J]. Sci Rep, 2019, 9(1):10349. doi: 10.1038/s41598-019-46699-3.
doi: 10.1038/s41598-019-46699-3 pmid: 31316078 |
[18] |
You X, Cui H, Yu N, et al. Knockdown of DDX46 inhibits trophoblast cell proliferation and migration through the PI3K/Akt/mTOR signaling pathway in preeclampsia[J]. Open Life Sci, 2020, 15(1):400-408. doi: 10.1515/biol-2020-0043.
doi: 10.1515/biol-2020-0043 pmid: 33817228 |
[19] |
Chu Y, Chen W, Peng W, et al. Amnion-Derived Mesenchymal Stem Cell Exosomes-Mediated Autophagy Promotes the Survival of Trophoblasts Under Hypoxia Through mTOR Pathway by the Downregulation of EZH2[J]. Front Cell Dev Biol, 2020, 8:545852. doi: 10.3389/fcell.2020.545852.
doi: 10.3389/fcell.2020.545852 |
[20] |
Lai W, Yu L. Elevated MicroRNA 183 Impairs Trophoblast Migration and Invasiveness by Downregulating FOXP1 Expression and Elevating GNG7 Expression during Preeclampsia[J]. Mol Cell Biol, 2020, 41(1):e00236-20. doi: 10.1128/MCB.00236-20.
doi: 10.1128/MCB.00236-20 |
[21] |
Liu J, Zhang Q, Ma N. LncRNA GASAL 1 Interacts with SRSF1 to Regulate Trophoblast Cell Proliferation, Invasion, and Apoptosis Via the mTOR Signaling Pathway[J]. Cell Transplant, 2020, 29:963689720965182. doi: 10.1177/0963689720965182.
doi: 10.1177/0963689720965182 |
[22] |
徐振华, 马廷学, 王永红. 中性粒细胞活化导致血管内皮功能损伤在子痫前期发病中的作用研究进展[J]. 国际妇产科学杂志, 2020, 47(4):365-368. doi: 10.3969/j.issn.1674-1870.2020.04.001.
doi: 10.3969/j.issn.1674-1870.2020.04.001 |
[23] |
Yang TL, Lee PL, Lee DY, et al. Differential regulations of fibronectin and laminin in Smad2 activation in vascular endothelial cells in response to disturbed flow[J]. J Biomed Sci, 2018, 25(1):1. doi: 10.1186/s12929-017-0402-4.
doi: 10.1186/s12929-017-0402-4 |
[24] |
Lai WS, Ding YL. GNG7 silencing promotes the proliferation and differentiation of placental cytotrophoblasts in preeclampsia rats through activation of the mTOR signaling pathway[J]. Int J Mol Med, 2019, 43(5):1939-1950. doi: 10.3892/ijmm.2019.4129.
doi: 10.3892/ijmm.2019.4129 |
[25] |
Huang J, Zheng L, Wang F, et al. Mangiferin ameliorates placental oxidative stress and activates PI3K/Akt/mTOR pathway in mouse model of preeclampsia[J]. Arch Pharm Res, 2020, 43(2):233-241. doi: 10.1007/s12272-020-01220-7.
doi: 10.1007/s12272-020-01220-7 pmid: 31989480 |
[26] |
Xue L, Xie K, Wu L, et al. A novel peptide relieves endothelial cell dysfunction in preeclampsia by regulating the PI3K/mTOR/HIF1α pathway[J]. Int J Mol Med, 2021, 47(1):276-288. doi: 10.3892/ijmm.2020.4793.
doi: 10.3892/ijmm.2020.4793 pmid: 33236147 |
[27] |
Zhang X, Li Q, Jiang W, et al. LAMA 5 promotes human umbilical vein endothelial cells migration, proliferation, and angiogenesis and is decreased in preeclampsia[J]. J Matern Fetal Neonatal Med, 2020, 33(7):1114-1124. doi: 10.1080/14767058.2018.1514597.
doi: 10.1080/14767058.2018.1514597 pmid: 30200802 |
[28] |
Yuan Y, Shan N, Tan B, et al. SRC-3 Plays a Critical Role in Human Umbilical Vein Endothelial Cells by Regulating the PI3K/Akt/mTOR Pathway in Preeclampsia[J]. Reprod Sci, 2018, 25(5):748-758. doi: 10.1177/1933719117725818.
doi: 10.1177/1933719117725818 pmid: 28826365 |
[29] |
Gui S, Zhou S, Liu M, et al. Elevated Levels of Soluble Axl (sAxl) Regulates Key Angiogenic Molecules to Induce Placental Endothelial Dysfunction and a Preeclampsia-Like Phenotype[J]. Front Physiol, 2021, 12:619137. doi: 10.3389/fphys.2021.619137.
doi: 10.3389/fphys.2021.619137 |
[30] |
van Niekerk G, Christowitz C, Engelbrecht AM. Insulin-mediated immune dysfunction in the development of preeclampsia[J]. J Mol Med (Berl), 2021, 99(7):889-897. doi: 10.1007/s00109-021-02068-0.
doi: 10.1007/s00109-021-02068-0 pmid: 33768298 |
[31] |
Rademacher TW, Gumaa K, Scioscia M. Preeclampsia, insulin signalling and immunological dysfunction: a fetal, maternal or placental disorder?[J]. J Reprod Immunol, 2007, 76(1/2):78-84. doi: 10.1016/j.jri.2007.03.019.
doi: 10.1016/j.jri.2007.03.019 |
[32] |
Hanson MA, Bardsley A, De-Regil LM, et al. The International Federation of Gynecology and Obstetrics (FIGO) recommendations on adolescent, preconception, and maternal nutrition: "Think Nutrition First"[J]. Int J Gynaecol Obstet, 2015, 131(Suppl 4):S213-S253. doi: 10.1016/S0020-7292(15)30034-5.
doi: 10.1016/S0020-7292(15)30034-5 |
[33] |
Suvakov S, Bonner E, Nikolic V, et al. Overlapping pathogenic signalling pathways and biomarkers in preeclampsia and cardiovascular disease[J]. Pregnancy Hypertens, 2020, 20:131-136. doi: 10.1016/j.preghy.2020.03.011.
doi: S2210-7789(20)30038-6 pmid: 32299060 |
[34] |
Han L, Luo QQ, Peng MG, et al. miR-483 is downregulated in pre-eclampsia via targeting insulin-like growth factor 1 (IGF1) and regulates the PI3K/Akt/mTOR pathway of endothelial progenitor cells[J]. J Obstet Gynaecol Res, 2021, 47(1):63-72. doi: 10.1111/jog.14412.
doi: 10.1111/jog.14412 |
[35] |
Li G, Lin L, Wang YL, et al. 1,25(OH)2D3 Protects Trophoblasts Against Insulin Resistance and Inflammation Via Suppressing mTOR Signaling[J]. Reprod Sci, 2019, 26(2):223-232. doi: 10.1177/1933719118766253.
doi: 10.1177/1933719118766253 pmid: 29575997 |
[36] |
Wara AK, Wang S, Wu C, et al. KLF 10 Deficiency in CD4(+) T Cells Triggers Obesity, Insulin Resistance, and Fatty Liver[J]. Cell Rep, 2020, 33(13):108550. doi: 10.1016/j.celrep.2020.108550.
doi: 10.1016/j.celrep.2020.108550 |
[37] |
Wang X, Zhong L, Liu Q, et al. Activation of Gonadotropin-releasing Hormone Receptor Impedes the Immunosuppressive Activity of Decidual Regulatory T Cells via Deactivating the Mechanistic Target of Rapamycin Signaling[J]. Immunol Invest, 2022, 51(5):1330-1346. doi: 10.1080/08820139.2021.1937208.
doi: 10.1080/08820139.2021.1937208 |
[1] | MA Ling, LI Ya-xi, ZHAO Min, WANG Jing, LI Hong-li. Progress on the Relationship between Apoptosis and Adverse Pregnancy Outcomes [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 121-126. |
[2] | HOU Chun-yan, DU Xiu-ping, WANG Hong-hong, HOU Yue-yang. Advances in the Pathogenesis of Fetal Growth Restriction by HMGA2 [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 127-131. |
[3] | YANG Yang, MA Yuan, CHEN You-yi, ZHAO Jing, MA Wen-juan. The Effect of Serum Exosomes from Patients with Severe Preeclampsia on the Function of Normal Decidual Immune Cells in Humans [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 143-152. |
[4] | XU Shu-ying, XU Hai-peng, WANG Li-na, ZHANG Yang. Relationship between Zinc and Polycystic Ovary Syndrome [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 217-221. |
[5] | WANG Jing, WANG Yong-hong. Decidual Natural Killer Cells in the Pathogenesis of Preeclampsia: A Review [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 88-93. |
[6] | ZHANG Wen, LIU Hui-qiang. The Role of SOCS1 and Exosomal MicroRNA in the Pathogenesis of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 94-98. |
[7] | WANG Yi-dan, WANG Yong-hong. The Role of the Transforming Growth Factor-β Superfamily in the Pathogenesis of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 99-104. |
[8] | FAN Bo-yang, HU Li-yan. Research Advancements on the Pathogenesis and Prediction Approaches of Twin Pregnancies Complicated with Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 611-615. |
[9] | XI Xin-xin, GUO Hong, LI Shan, FENG Di, LIU Duo-duo. Effect of Preoperative Oral Carbohydrate on Enhanced Recovery after Cesarean Section [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 616-619. |
[10] | CHEN Zhi-ru, DAI Lan. Research Progress of the Relationship between Chemoradiotherapy-Induced Tumor Cell Death and Tumor Repopulation [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 648-653. |
[11] | HU Die, REN Jia-jie, LIU Jia-ning, FENG Xiao-ling. Mechanism Study of MAPK Pathway in PCOS and Monomeric Treatment of Traditional Chinese Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 684-691. |
[12] | GAO Yi-wei, LUO Wei, WU Qiong, MU Yu-lan. The Relationship Between Ferroptosis and Premature Ovarian Insufficiency [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 497-502. |
[13] | DENG Ling-ling, WU Shao-wen, ZHANG Wei-yuan. Research Progress on Low-Dose Aspirin in the Prevention of Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 515-518. |
[14] | ZHANG Qi, WANG Xin, REN Yi, LIU Chao, GAO Hui-jie. Research Progress on SLRPs in Placental Development and Pregnancy-Related Diseases [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 525-530. |
[15] | GUO Xi, WEI Jia, YANG Yong-xiu. Hormonal Pathways and Regulatory Factors That Lead to Endometrial Disease [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 395-400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||