Journal of International Obstetrics and Gynecology ›› 2023, Vol. 50 ›› Issue (6): 613-617.doi: 10.12280/gjfckx.20230661
Previous Articles Next Articles
Received:
2023-08-29
Published:
2023-12-15
Online:
2023-12-13
Contact:
XIA Zhi-jun
E-mail:xiazj@sj-hospital.org
ZHU Jing, XIA Zhi-jun. Human Vaginal Fibroblast Dysfunction in Pelvic Organ Prolapse[J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 613-617.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Raju R, Linder BJ. Evaluation and Management of Pelvic Organ Prolapse[J]. Mayo Clin Proc, 2021, 96(12):3122-3129. doi: 10.1016/j.mayocp.2021.09.005.
pmid: 34863399 |
[2] |
Weintraub AY, Glinter H, Marcus-Braun N. Narrative review of the epidemiology, diagnosis and pathophysiology of pelvic organ prolapse[J]. Int Braz J Urol, 2020, 46(1):5-14. doi: 10.1590/S1677-5538.IBJU.2018.0581.
pmid: 31851453 |
[3] | Gong R, Xi Y, Jin X, et al. Effects of the decrease of β-catenin expression on human vaginal fibroblasts of women with pelvic organ prolapse[J]. J Obstet Gynaecol Res, 2021, 47(11):4014-4022. doi: 10.1111/jog.14946. |
[4] |
Clément V, Roy V, Paré B, et al. Tridimensional cell culture of dermal fibroblasts promotes exosome-mediated secretion of extracellular matrix proteins[J]. Sci Rep, 2022, 12(1):19786. doi: 10.1038/s41598-022-23433-0.
pmid: 36396670 |
[5] |
Huang L, Zhao Z, Wen J, et al. Cellular senescence: A pathogenic mechanism of pelvic organ prolapse (Review)[J]. Mol Med Rep, 2020, 22(3):2155-2162. doi: 10.3892/mmr.2020.11339.
pmid: 32705234 |
[6] |
Sima Y, Li L, Xiao C, et al. Advanced glycation end products (AGEs) downregulate the miR-4429/PTEN axis to promote apoptosis of fibroblasts in pelvic organ prolapse[J]. Ann Transl Med, 2022, 10(15):821. doi: 10.21037/atm-22-628.
pmid: 36035012 |
[7] | Yin Y, Qin M, Luan M, et al. miR-19-3p Promotes Autophagy and Apoptosis in Pelvic Organ Prolapse Through the AKT/mTOR/p70S6K Pathway: Function of miR-19-3p on Vaginal Fibroblasts by Targeting IGF-1[J]. Female Pelvic Med Reconstr Surg, 2021, 27(9):e630-e638. doi: 10.1097/SPV.0000000000001034. |
[8] | Sun X, Zhu H, Li W, et al. Small extracellular vesicles secreted by vaginal fibroblasts exert inhibitory effect in female stress urinary incontinence through regulating the function of fibroblasts[J]. PLoS One, 2021, 16(4):e0249977. doi: 10.1371/journal.pone.0249977. |
[9] |
Zhao C, Xiao Y, Ling S, et al. Structure of Collagen[J]. Methods Mol Biol, 2021, 2347:17-25. doi: 10.1007/978-1-0716-1574-4_2.
pmid: 34472051 |
[10] | Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases[J]. Int J Mol Sci, 2020, 21(24):9739. doi: 10.3390/ijms21249739. |
[11] |
Abdel-Hamid NM, Abass SA. Matrix metalloproteinase contribution in management of cancer proliferation, metastasis and drug targeting[J]. Mol Biol Rep, 2021, 48(9):6525-6538. doi: 10.1007/s11033-021-06635-z.
pmid: 34379286 |
[12] |
Muscella A, Vetrugno C, Cossa LG, et al. TGF-β1 activates RSC96 Schwann cells migration and invasion through MMP-2 and MMP-9 activities[J]. J Neurochem, 2020, 153(4):525-538. doi: 10.1111/jnc.14913.
pmid: 31729763 |
[13] | Heinz A. Elastases and elastokines: elastin degradation and its significance in health and disease[J]. Crit Rev Biochem Mol Biol, 2020, 55(3):252-273. doi: 10.1080/10409238.2020.1768208. |
[14] | Martín-López J, Pérez-Rico C, Benito-Martínez S, et al. The Role of the Stromal Extracellular Matrix in the Development of Pterygium Pathology: An Update[J]. J Clin Med, 2021, 10(24):5930. doi: 10.3390/jcm10245930. |
[15] | Yanagisawa H, Schluterman MK, Brekken RA. Fibulin-5, an integrin-binding matricellular protein: its function in development and disease[J]. J Cell Commun Signal, 2009, 3(3/4):337-347. doi: 10.1007/s12079-009-0065-3. |
[16] | Hung MJ, Wen MC, Hung CN, et al. Tissue-engineered fascia from vaginal fibroblasts for patients needing reconstructive pelvic surgery[J]. Int Urogynecol J, 2010, 21(9):1085-1093. doi: 10.1007/s00192-010-1168-3. |
[17] | Gong R, Ji Y, Zhao Y, et al. Changes in β-Catenin Expression in the Anterior Vaginal Wall Tissues of Women With Pelvic Organ Prolapse: A Potential Pathophysiological Mechanism[J]. Female Pelvic Med Reconstr Surg, 2020, 26(11):e54-e61. doi: 10.1097/SPV.0000000000000782. |
[18] |
Tian X, Wang F, Luo Y, et al. Protective Role of Nuclear Factor-Erythroid 2-Related Factor 2 Against Radiation-Induced Lung Injury and Inflammation[J]. Front Oncol, 2018, 8:542. doi: 10.3389/fonc.2018.00542.
pmid: 30533397 |
[19] | Guo Y, Jia X, Cui Y, et al. Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis[J]. Redox Biol, 2021, 41:101915. doi: 10.1016/j.redox.2021.101915. |
[20] | Chen YS, Wang XJ, Feng W, et al. Advanced glycation end products decrease collagen I levels in fibroblasts from the vaginal wall of patients with POP via the RAGE, MAPK and NF-κB pathways[J]. Int J Mol Med, 2017, 40(4):987-998. doi: 10.3892/ijmm.2017.3097. |
[21] | Chen L, Liu B, Qin Y, et al. Mitochondrial Fusion Protein Mfn2 and Its Role in Heart Failure[J]. Front Mol Biosci, 2021, 8:681237. doi: 10.3389/fmolb.2021.681237. |
[22] | Han S, Zhao F, Hsia J, et al. The role of Mfn2 in the structure and function of endoplasmic reticulum-mitochondrial tethering in vivo[J]. J Cell Sci, 2021, 134(13):jcs253443. doi: 10.1242/jcs.253443. |
[23] | Wang XQ, He RJ, Xiao BB, et al. Therapeutic Effects of 17β-Estradiol on Pelvic Organ Prolapse by Inhibiting Mfn2 Expression: An In Vitro Study[J]. Front Endocrinol (Lausanne), 2020, 11:586242. doi: 10.3389/fendo.2020.586242. |
[24] |
Yu X, He L, Wang Y, et al. Local Estrogen Therapy for Pelvic Organ Prolapse in Postmenopausal Women: A Systematic Review and Meta-Analysis[J]. Iran J Public Health, 2022, 51(8):1728-1740. doi: 10.18502/ijph.v51i8.10255.
pmid: 36249112 |
[25] |
Tyagi T, Alarab M, Leong Y, et al. Local oestrogen therapy modulates extracellular matrix and immune response in the vaginal tissue of post-menopausal women with severe pelvic organ prolapse[J]. J Cell Mol Med, 2019, 23(4):2907-2919. doi: 10.1111/jcmm.14199.
pmid: 30772947 |
[26] |
Zhang L, Dai F, Chen G, et al. Molecular mechanism of extracellular matrix disorder in pelvic organ prolapses[J]. Mol Med Rep, 2020, 22(6):4611-4618. doi: 10.3892/mmr.2020.11564.
pmid: 33173982 |
[27] |
Ma Y, Guess M, Datar A, et al. Knockdown of Hoxa11 in vivo in the uterosacral ligament and uterus of mice results in altered collagen and matrix metalloproteinase activity[J]. Biol Reprod, 2012, 86(4):100. doi: 10.1095/biolreprod.111.093245.
pmid: 22190701 |
[28] | Zhao B, Sun Q, Fan Y, et al. Transplantation of bone marrow-derived mesenchymal stem cells with silencing of microRNA-138 relieves pelvic organ prolapse through the FBLN5/IL-1β/elastin pathway[J]. Aging(Albany NY), 2021, 13(2):3045-3059. doi: 10.18632/aging.202465. |
[29] | Ying W, Hu Y, Zhu H. Expression of CD44, Transforming Growth Factor-β, and Matrix Metalloproteinases in Women With Pelvic Organ Prolapse[J]. Front Surg, 2022, 9:902871. doi: 10.3389/fsurg.2022.902871. |
[30] |
Li L, Ma Y, Yang H, et al. The polymorphisms of extracellular matrix-remodeling genes are associated with pelvic organ prolapse[J]. Int Urogynecol J, 2022, 33(2):267-274. doi: 10.1007/s00192-021-04917-5.
pmid: 34973089 |
[31] | Sun MJ, Cheng YS, Sun R, et al. Changes in mitochondrial DNA copy number and extracellular matrix (ECM) proteins in the uterosacral ligaments of premenopausal women with pelvic organ prolapse[J]. Taiwan J Obstet Gynecol, 2016, 55(1):9-15. doi: 10.1016/j.tjog.2014.04.032. |
[32] |
Hu Y, Wu R, Li H, et al. Expression and Significance of Metalloproteinase and Collagen in Vaginal Wall Tissues of Patients with Pelvic Organ Prolapse[J]. Ann Clin Lab Sci, 2017, 47(6):698-705.
pmid: 29263043 |
[33] | Chen B, Wen Y, Polan ML. Elastolytic activity in women with stress urinary incontinence and pelvic organ prolapse[J]. Neurourol Urodyn, 2004, 23(2):119-126. doi: 10.1002/nau.20012. |
[34] | Akintunde AR, Robison KM, Capone DJ, et al. Effects of Elastase Digestion on the Murine Vaginal Wall Biaxial Mechanical Response[J]. J Biomech Eng, 2019, 141(2):0210111-02101111. doi: 10.1115/1.4042014. |
[1] | LIN Huan-yu, YU Min, LU Xu-hong. Research Progress on High-Risk Factors for Postpartum Pelvic Floor Dysfunction [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 620-623. |
[2] | TAN Mi, TAN Qing-qing. Non-Surgical Treatment Methods for Pelvic Floor Dysfunction [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 401-405. |
[3] | LIU Shu-jie, ZHANG Hai-Yan. Research Progress of Laparoscopic Lateral Suspension with Mesh and Its Modified Operation in the Treatment of Pelvic Organ Prolapse [J]. Journal of International Obstetrics and Gynecology, 2024, 51(2): 121-127. |
[4] | XUE Feng-qin, ZHAO Shu-rui, ZHAO Ye. Advances in the Anatomical and Histological Characteristics of the Human Uterosacral Ligament and Related Biomechanical Studies [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 606-612. |
[5] | WANG Shu-yu, WANG Wen-xin, ZHAO Ye. Value of Magnetic Resonance Imaging in the Diagnosis and Treatment of Pelvic Organ Prolapsed [J]. Journal of International Obstetrics and Gynecology, 2023, 50(1): 116-120. |
[6] | WANG Zhao, PING Yi. Animal Models of Pelvic Floor Dysfunctions and Biomechanical Measurements [J]. Journal of International Obstetrics and Gynecology, 2022, 49(5): 502-506. |
[7] | WU Zhen-zhen, WEI Ying, ZHENG Jing, WANG Hui-ling, LIU Qing. Spondylodiscitis following Laparoscopic Sacrocolpopexy: A Case Report and Literature Review [J]. Journal of International Obstetrics and Gynecology, 2022, 49(2): 172-175. |
[8] | WANG Li, WANG Jia, WEI Xiao-xuan, NIU Hai-ying. Research on the Complications of Pessary in the Treatment of Female Pelvic Organ Prolapse [J]. Journal of International Obstetrics and Gynecology, 2021, 48(6): 700-703. |
[9] | JIA Hong-jing, DENG Xue-dong, CHEN Xiao-min, CAO Jiao-jiao, MA Lei, LU Bing. Application of Three- and Four-Dimensional Transperineal Ultrasound in Diagnosis of Pelvic Organ Prolapse by Measuring Area of Levator Hiatus [J]. Journal of International Obstetrics and Gynecology, 2021, 48(4): 434-437. |
[10] | XIANG Xue-bing, HU Qing, XIA Zhi-jun. Advantages and Complications of Transvaginal Mesh Surgery [J]. Journal of International Obstetrics and Gynecology, 2021, 48(2): 219-223. |
[11] | WANG Dong-liang, LI Qing, HU Bin, DENG Ke-hong, HUANG Dong-mei. A Case Report of Uterus Sacrum Fixation with Y Shape Mesh in Transumbilical Single Port Laparoscopic [J]. Journal of International Obstetrics and Gynecology, 2021, 48(2): 235-237. |
[12] | NAN Lian-ling, MU Wan-ru, ZHANG Hong, LI Jie, YANG Chen-chen, TANG Ling, BAI Yu-fang. Connexin 43 and Premature Rupture of Membranes Related Problems [J]. Journal of International Obstetrics and Gynecology, 2021, 48(1): 79-83. |
[13] | WEI Ying,WU Zhen-zhen,WANG Jian,MAO Bao-hong,WANG Yan-xia,LIU Qing. Research Progress in the Route of Sacrocolpopexy [J]. Journal of International Obstetrics and Gynecology, 2020, 47(1): 106-110. |
[14] | ZHANG Ti-shuo,WANG Ling,TIAN Di,ZHANG Qun,HAN Li-ying. Advances of Laparoscopic Pectopexy in the Treatment of Pelvic Organ Prolapse [J]. Journal of International Obstetrics and Gynecology, 2019, 46(6): 605-608. |
[15] | ZHANG Ci-min,ZHANG Yan. Research Progress in the Pathogenesis of Preterm Premature Rupture of Fetal Membranes [J]. Journal of International Obstetrics and Gynecology, 2019, 46(6): 641-644. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||