Journal of International Obstetrics and Gynecology ›› 2024, Vol. 51 ›› Issue (6): 641-647.doi: 10.12280/gjfckx.20240791
• Research on Gynecological Malignancies: Review • Previous Articles Next Articles
CHEN Xing-yu, WEI Ya-jing, LIANG Yan-chun△()
Received:
2024-09-02
Published:
2024-12-15
Online:
2024-12-16
Contact:
LIANG Yan-chun, E-mail: CHEN Xing-yu, WEI Ya-jing, LIANG Yan-chun. Advances in Uterine Leiomyosarcoma:Mapping Based on Genomics[J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 641-647.
Add to citation manager EndNote|Ris|BibTeX
基因 | 相关通路效应 | 检测技术 | 参考文献 |
---|---|---|---|
PTBP1、AGR2、 DUSP2、NR4A2、 MT1G、SIK1 | 抑制肿瘤细胞生长 | WGS | [ |
PTEN | 下调细胞增殖通路 | WGS | [ |
TP53 | 抑制肿瘤细胞生长 | WGS | [ |
RB1 | 抑制细胞周期进展 | WGS | [ |
VIPR2 | 抑制肿瘤细胞生长 | WGS | [ |
PDCD1 | 免疫逃逸 | 全外显子组测序 | [ |
CDKN2C | 调控细胞周期 | 杂交捕获测序 | [ |
DPP6 | 未明确 | GEO数据库 | [ |
MFAP5 | 抑制肿瘤侵袭性 | GEO数据库 | [ |
基因 | 相关通路效应 | 检测技术 | 参考文献 |
---|---|---|---|
PTBP1、AGR2、 DUSP2、NR4A2、 MT1G、SIK1 | 抑制肿瘤细胞生长 | WGS | [ |
PTEN | 下调细胞增殖通路 | WGS | [ |
TP53 | 抑制肿瘤细胞生长 | WGS | [ |
RB1 | 抑制细胞周期进展 | WGS | [ |
VIPR2 | 抑制肿瘤细胞生长 | WGS | [ |
PDCD1 | 免疫逃逸 | 全外显子组测序 | [ |
CDKN2C | 调控细胞周期 | 杂交捕获测序 | [ |
DPP6 | 未明确 | GEO数据库 | [ |
MFAP5 | 抑制肿瘤侵袭性 | GEO数据库 | [ |
基因/染色体 | 相关通路效应 | 检测技术 | 参考文献 |
---|---|---|---|
5p、17p | 与肿瘤预后相关 | 比较基因组杂交分析 | [ |
CCNE1 | 诱发染色体不稳定 | WGS | [ |
TDO2 | 抑制抗肿瘤免疫反应 | WGS | [ |
MAP2K4、RIT1 | 未知 | 外显子测序 | [ |
SHARPIN | 促进细胞增殖 | 外显子测序 | [ |
ZNF217 | 促进细胞增殖与侵袭 | GEPIA统计分析 | [ |
NRDC | 促进细胞迁移和黏附 | GEPIA统计分析 | [ |
NKX6-1 | 促进肿瘤细胞增殖 | TCGA数据分析 | [ |
FGF5 | 促进血管生成、侵袭转移 | DNA和RNA测序 | [ |
PAX3 | 影响细胞分化、增殖、转移 | DNA和RNA测序 | [ |
基因/染色体 | 相关通路效应 | 检测技术 | 参考文献 |
---|---|---|---|
5p、17p | 与肿瘤预后相关 | 比较基因组杂交分析 | [ |
CCNE1 | 诱发染色体不稳定 | WGS | [ |
TDO2 | 抑制抗肿瘤免疫反应 | WGS | [ |
MAP2K4、RIT1 | 未知 | 外显子测序 | [ |
SHARPIN | 促进细胞增殖 | 外显子测序 | [ |
ZNF217 | 促进细胞增殖与侵袭 | GEPIA统计分析 | [ |
NRDC | 促进细胞迁移和黏附 | GEPIA统计分析 | [ |
NKX6-1 | 促进肿瘤细胞增殖 | TCGA数据分析 | [ |
FGF5 | 促进血管生成、侵袭转移 | DNA和RNA测序 | [ |
PAX3 | 影响细胞分化、增殖、转移 | DNA和RNA测序 | [ |
基因 | 基因突变后的效应 | 检测技术 | 参考文献 |
---|---|---|---|
TP53、RB1 | 细胞增殖失控 | WGS | [ |
ATRX | 抑制端粒酶、促进细胞增殖 | WGS | [ |
PTEN | 促进细胞增殖 | WGS | [ |
MED12 | 增强耐药性、侵袭性 | WGS | [ |
BCL-2 | 增强耐药性,抵抗细胞凋亡 | 全外显子组测序 | [ |
BRCA2 | 增加细胞发生DNA损伤 | 全外显子组测序 | [ |
FRS3、SH2B3、SARM1、 BLK、FAM120A | 酪氨酸激酶通路异常、细胞增殖异常 | 全外显子组测序 | [ |
PDGFRB、CDKN2A/B、TERT | 高度侵袭性、频繁的远处转移 | 全外显子组测序 | [ |
基因 | 基因突变后的效应 | 检测技术 | 参考文献 |
---|---|---|---|
TP53、RB1 | 细胞增殖失控 | WGS | [ |
ATRX | 抑制端粒酶、促进细胞增殖 | WGS | [ |
PTEN | 促进细胞增殖 | WGS | [ |
MED12 | 增强耐药性、侵袭性 | WGS | [ |
BCL-2 | 增强耐药性,抵抗细胞凋亡 | 全外显子组测序 | [ |
BRCA2 | 增加细胞发生DNA损伤 | 全外显子组测序 | [ |
FRS3、SH2B3、SARM1、 BLK、FAM120A | 酪氨酸激酶通路异常、细胞增殖异常 | 全外显子组测序 | [ |
PDGFRB、CDKN2A/B、TERT | 高度侵袭性、频繁的远处转移 | 全外显子组测序 | [ |
基因 | 相关效应 | 检测技术 | 参考文献 |
---|---|---|---|
ATRX融合基因 | 抑制端粒酶、促进 细胞增殖 | DNA测序 | [ |
TNS1-ALK融合 | 促进细胞增殖 | DNA和RNA测序 | [ |
基因 | 相关效应 | 检测技术 | 参考文献 |
---|---|---|---|
ATRX融合基因 | 抑制端粒酶、促进 细胞增殖 | DNA测序 | [ |
TNS1-ALK融合 | 促进细胞增殖 | DNA和RNA测序 | [ |
[1] |
Abeler VM, Royne O, Thoresen S, et al. Uterine sarcomas in Norway. A histopathological and prognostic survey of a total population from 1970 to 2000 including 419 patients[J]. Histopathology, 2009, 54(3):355-364. doi:10.1111/j.1365-2559.2009.03231.x.
pmid: 19236512 |
[2] |
Cree IA, White VA, Indave BI, et al. Revising the WHO classification:female genital tract tumours[J]. Histopathology, 2020, 76(1):151-156. doi:10.1111/his.13977.
pmid: 31846528 |
[3] |
Sherman RM, Salzberg SL. Pan-genomics in the human genome era[J]. Nat Rev Genet, 2020, 21(4):243-254. doi:10.1038/s41576-020-0210-7.
pmid: 32034321 |
[4] |
Haffner MC, Zwart W, Roudier MP, et al. Genomic and phenotypic heterogeneity in prostate cancer[J]. Nat Rev Urol, 2021, 18(2):79-92. doi:10.1038/s41585-020-00400-w.
pmid: 33328650 |
[5] | Höhn AK, Brambs CE, Hiller GGR, et al. 2020 WHO Classification of Female Genital Tumors[J]. Geburtshilfe Frauenheilkd, 2021, 81(10):1145-1153. doi:10.1055/a-1545-4279. |
[6] | Mbatani N, Olawaiye AB, Prat J. Uterine sarcomas[J]. Int J Gynaecol Obstet, 2018, 143(Suppl 2):51-58. doi:10.1002/ijgo.12613. |
[7] | Dall GV, Hamilton A, Ratnayake G, et al. Interrogating the Genomic Landscape of Uterine Leiomyosarcoma:A Potential for Patient Benefit[J]. Cancers(Basel), 2022, 14(6):1561. doi:10.3390/cancers14061561. |
[8] | Momeni-Boroujeni A, Yousefi E, Balakrishnan R, et al. Molecular-Based Immunohistochemical Algorithm for Uterine Leiomyosarcoma Diagnosis[J]. Mod Pathol, 2023, 36(4):100084. doi:10.1016/j.modpat.2022.100084. |
[9] | 中国抗癌协会妇科肿瘤专业委员会. 子宫肉瘤诊断与治疗指南(2021年版)[J]. 中国癌症杂志, 2021, 31(6):513-519. doi:10.19401/j.cnki.1007-3639.2021.06.09. |
[10] | Gao T, Finkelman BS, Ban Y, et al. Integrated histologic and molecular analysis of uterine leiomyosarcoma and 2 benign variants with nuclear atypia[J]. Cancer Sci, 2021, 112(5):2046-2059. doi:10.1111/cas.14775. |
[11] | Makinen N, Aavikko M, Heikkinen T, et al. Exome Sequencing of Uterine Leiomyosarcomas Identifies Frequent Mutations in TP53,ATRX,and MED12[J]. PLoS Genet, 2016, 12(2):e1005850. doi:10.1371/journal.pgen.1005850. |
[12] |
Cuppens T, Moisse M, Depreeuw J, et al. Integrated genome analysis of uterine leiomyosarcoma to identify novel driver genes and targetable pathways[J]. Int J Cancer, 2018, 142(6):1230-1243. doi:10.1002/ijc.31129.
pmid: 29063609 |
[13] |
Hensley ML, Chavan SS, Solit DB, et al. Genomic Landscape of Uterine Sarcomas Defined Through Prospective Clinical Sequencing[J]. Clin Cancer Res, 2020, 26(14):3881-3888. doi:10.1158/1078-0432.CCR-19-3959.
pmid: 32299819 |
[14] | Yarchoan M, Hopkins A, Jaffee EM. Tumor Mutational Burden and Response Rate to PD-1 Inhibition[J]. N Engl J Med, 2017, 377(25):2500-2501. doi:10.1056/NEJMc1713444. |
[15] |
Malumbres M, Barbacid M. Cell cycle,CDKs and cancer:a changing paradigm[J]. Nat Rev Cancer, 2009, 9(3):153-166. doi:10.1038/nrc2602.
pmid: 19238148 |
[16] | Williams EA, Sharaf R, Decker B, et al. CDKN2C-Null Leiomyosarcoma:A Novel,Genomically Distinct Class of TP53/RB1-Wild-Type Tumor With Frequent CIC Genomic Alterations and 1p/19q-Codeletion[J]. JCO Precis Oncol, 2020, 4:PO.20.00040. doi:10.1200/PO.20.00040. |
[17] |
Gao X, Leone GW, Wang H. Cyclin D-CDK4/6 functions in cancer[J]. Adv Cancer Res, 2020, 148:147-169. doi:10.1016/bs.acr.2020.02.002.
pmid: 32723562 |
[18] |
Zang Y, Gu L, Zhang Y, et al. Identification of key genes and pathways in uterine leiomyosarcoma through bioinformatics analysis[J]. Oncol Lett, 2018, 15(6):9361-9368. doi:10.3892/ol.2018.8503.
pmid: 29844831 |
[19] |
Seligson ND, Kautto EA, Passen EN, et al. BRCA1/2 Functional Loss Defines a Targetable Subset in Leiomyosarcoma[J]. Oncologist, 2019, 24(7):973-979. doi:10.1634/theoncologist.2018-0448.
pmid: 30541756 |
[20] | Xie C, Luo J, He Y, et al. BRCA2 gene mutation in cancer[J]. Medicine(Baltimore), 2022, 101(45):e31705. doi:10.1097/MD.0000000000031705. |
[21] | Ke Y, You L, Xu Y, et al. DPP6 and MFAP5 are associated with immune infiltration as diagnostic biomarkers in distinguishing uterine leiomyosarcoma from leiomyoma[J]. Front Oncol, 2022, 12:1084192. doi:10.3389/fonc.2022.1084192. |
[22] | Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome[J]. Science, 2015, 347(6220):1260419. doi:10.1126/science.1260419. |
[23] | Croce S, Ducoulombier A, Ribeiro A, et al. Genome profiling is an efficient tool to avoid the STUMP classification of uterine smooth muscle lesions:a comprehensive array-genomic hybridization analysis of 77 tumors[J]. Mod Pathol, 2018, 31(5):816-828. doi:10.1038/modpathol.2017.185. |
[24] |
Keck JM, Summers MK, Tedesco D, et al. Cyclin E overexpression impairs progression through mitosis by inhibiting APC(Cdh1)[J]. J Cell Biol, 2007, 178(3):371-385. doi:10.1083/jcb.200703202.
pmid: 17664332 |
[25] | Pilotte L, Larrieu P, Stroobant V, et al. Reversal of tumoral immune resistance by inhibition of tryptophan 2,3-dioxygenase[J]. Proc Natl Acad Sci U S A, 2012, 109(7):2497-2502. doi:10.1073/pnas.1113873109. |
[26] | Chen L, Li J, Wu X, et al. Identification of Somatic Genetic Alterations Using Whole-Exome Sequencing of Uterine Leiomyosarcoma Tumors[J]. Front Oncol, 2021, 11:687899. doi:10.3389/fonc.2021.687899. |
[27] |
Kodama M, Shimura H, Tien JC, et al. Sleeping Beauty Transposon Mutagenesis Identifies Genes Driving the Initiation and Metastasis of Uterine Leiomyosarcoma[J]. Cancer Res, 2021, 81(21):5413-5424. doi:10.1158/0008-5472.CAN-21-0356.
pmid: 34475109 |
[28] | Wang Y, Ma C, Yang X, et al. ZNF217:An Oncogenic Transcription Factor and Potential Therapeutic Target for Multiple Human Cancers[J]. Cancer Manag Res, 2024, 16:49-62. doi:10.2147/CMAR.S431135. |
[29] | Choong LY, Lim SK, Chen Y, et al. Elevated NRD1 metalloprotease expression plays a role in breast cancer growth and proliferation[J]. Genes Chromosomes Cancer, 2011, 50(10):837-847. doi:10.1002/gcc.20905. |
[30] | Su PH, Huang RL, Lai HC, et al. NKX6-1 mediates cancer stem-like properties and regulates sonic hedgehog signaling in leiomyosarcoma[J]. J Biomed Sci, 2021, 28(1):32. doi:10.1186/s12929-021-00726-6. |
[31] | Mas A, Alonso R, Garrido-Gomez T, et al. The differential diagnoses of uterine leiomyomas and leiomyosarcomas using DNA and RNA sequencing[J]. Am J Obstet Gynecol, 2019, 221(4):320.e321-e323. doi:10.1016/j.ajog.2019.05.018. |
[32] |
Stangis MM, Colah AN, McLean DT, et al. Potential roles of FGF5 as a candidate therapeutic target in prostate cancer[J]. Am J Clin Exp Urol, 2023, 11(6):452-466.
pmid: 38148937 |
[33] |
Searcy MB, Larsen RK 4th, Stevens BT, et al. PAX3-FOXO1 dictates myogenic reprogramming and rhabdomyosarcoma identity in endothelial progenitors[J]. Nat Commun, 2023, 14(1):7291. doi:10.1038/s41467-023-43044-1.
pmid: 37968277 |
[34] |
Zhang S, Wang J, Liu Q, et al. PAX3-FOXO1 coordinates enhancer architecture,eRNA transcription,and RNA polymerase pause release at select gene targets[J]. Mol Cell, 2022, 82(23):4428-4442.e7. doi:10.1016/j.molcel.2022.10.025.
pmid: 36395771 |
[35] | Cope BM, Traweek RS, Lazcano R, et al. Targeting the Molecular and Immunologic Features of Leiomyosarcoma[J]. Cancers(Basel), 2023, 15(7):2099. doi:10.3390/cancers15072099. |
[36] | Travaglino A, Raffone A, Raimondo D, et al. Diagnostic and prognostic value of Bcl-2 in uterine leiomyosarcoma[J]. Arch Gynecol Obstet, 2023, 307(2):379-386. doi:10.1007/s00404-022-06531-2. |
[37] |
Hanahan D, Weinberg RA. The hallmarks of cancer[J]. Cell, 2000, 100(1):57-70. doi:10.1016/s0092-8674(00)81683-9.
pmid: 10647931 |
[38] | Yoon JY, Marino-Enriquez A, Stickle N, et al. Myxoid smooth muscle neoplasia of the uterus:comprehensive analysis by next-generation sequencing and nucleic acid hybridization[J]. Mod Pathol, 2019, 32(11):1688-1697. doi:10.1038/s41379-019-0299-4. |
[39] |
Jiao Q, Bi L, Ren Y, et al. Advances in studies of tyrosine kinase inhibitors and their acquired resistance[J]. Mol Cancer, 2018, 17(1):36. doi:10.1186/s12943-018-0801-5.
pmid: 29455664 |
[40] | Dermawan JK, Chiang S, Hensley ML, et al. High-Grade Sarcomas with Myogenic Differentiation Harboring Hotspot PDGFRB Mutations[J]. Mod Pathol, 2023, 36(5):100104. doi:10.1016/j.modpat.2023.100104. |
[41] | Machado-Lopez A, Alonso R, Lago V, et al. Integrative Genomic and Transcriptomic Profiling Reveals a Differential Molecular Signature in Uterine Leiomyoma versus Leiomyosarcoma[J]. Int J Mol Sci, 2022, 23(4):2190. doi:10.3390/ijms23042190. |
[42] | Ren B, Yang J, Wang C, et al. High-resolution Hi-C maps highlight multiscale 3D epigenome reprogramming during pancreatic cancer metastasis[J]. J Hematol Oncol, 2021, 14(1):120. doi:10.1186/s13045-021-01131-0. |
[43] | Chiang S, Hensley ML, Vasudevaraja V, et al. 3D genomics identify alternate mechanisms of homologous recombination deficiency in uterine sarcoma[J]. J Clin Oncol, 2023, 41(16 suppl):e17624. doi:10.1200/JCO.2023.41.16_suppl.e17624. |
[44] | Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism:Still emerging[J]. Cell Metab, 2022, 34(3):355-377. doi:10.1016/j.cmet.2022.01.007. |
[45] | Regad T. Targeting RTK Signaling Pathways in Cancer[J]. Cancers(Basel), 2015, 7(3):1758-1784. doi:10.3390/cancers7030860. |
[46] | Feng T, Zhao R, Zhang H, et al. Reciprocal negative feedback regulation of ATF6alpha and PTEN promotes prostate cancer progression[J]. Cell Mol Life Sci, 2023, 80(10):292. doi:10.1007/s00018-023-04940-3. |
[47] |
Weinberg RA. Coming full circle-from endless complexity to simplicity and back again[J]. Cell, 2014, 157(1):267-271. doi:10.1016/j.cell.2014.03.004.
pmid: 24679541 |
[48] | Offin M, Chan JM, Tenet M, et al. Concurrent RB1 and TP53 Alterations Define a Subset of EGFR-Mutant Lung Cancers at risk for Histologic Transformation and Inferior Clinical Outcomes[J]. J Thorac Oncol, 2019, 14(10):1784-1793. doi:10.1016/j.jtho.2019.06.002. |
[49] | Alvarez-Garcia V, Tawil Y, Wise HM, et al. Mechanisms of PTEN loss in cancer:It′s all about diversity[J]. Semin Cancer Biol, 2019, 59:66-79. doi:10.1016/j.semcancer.2019.02.001. |
[50] | Roake CM, Artandi SE. Regulation of human telomerase in homeostasis and disease[J]. Nat Rev Mol Cell Biol, 2020, 21(7):384-397. doi:10.1038/s41580-020-0234-z. |
[51] | Morad G, Helmink BA, Sharma P, et al. Hallmarks of response,resistance,and toxicity to immune checkpoint blockade[J]. Cell, 2021, 184(21):5309-5337. doi:10.1016/j.cell.2021.09.020. |
[52] | Liu ZL, Chen HH, Zheng LL, et al. Angiogenic signaling pathways and anti-angiogenic therapy for cancer[J]. Signal Transduct Target Ther, 2023, 8(1):198. doi:10.1038/s41392-023-01460-1. |
[53] | Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease:Beyond Discovery and Development[J]. Cell, 2019, 176(6):1248-1264. doi:10.1016/j.cell.2019.01.021. |
[54] |
Giacomini A, Chiodelli P, Matarazzo S, et al. Blocking the FGF/FGFR system as a "two-compartment" antiangiogenic/antitumor approach in cancer therapy[J]. Pharmacol Res, 2016, 107:172-185. doi:10.1016/j.phrs.2016.03.024.
pmid: 27013279 |
[55] |
Suhail Y, Cain MP, Vanaja K, et al. Systems Biology of Cancer Metastasis[J]. Cell Syst, 2019, 9(2):109-127. doi:10.1016/j.cels.2019.07.003.
pmid: 31465728 |
[1] | CAO Xiu-rong, ZHOU Wen-bai, FAN Xiang, WANG Yi-fei, ZHU Peng-feng. Single-Cell RNA Sequencing Analysis of the Angiogenesis Mechanism in Endometriosis [J]. Journal of International Obstetrics and Gynecology, 2025, 52(2): 199-205. |
[2] | LUO Na, CHEN Yan. A Case of Recurrent Uterine Smooth Muscle Tumor of Uncertain Malignant Potential Underwent Hysterectomy after Hysteroscopic Lesion Resection [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 42-45. |
[3] | QIU Wan-ning, WEI Yuan. Advances in the Etiological Research of Discordant Anomalies in Monozygotic Twins Pregnancy [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 607-610. |
[4] | LIU Yan-jun, ZHANG Ying. A Case of Parasitic Leiomyoma with Massive Ascites and Elevated CA125 [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 588-592. |
[5] | SU Hai-qi, LI Lei. Advances in Methylation Detection for Ovarian Cancer Screening and Diagnosis [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 366-369. |
[6] | CHEN Xiao-jing, LI Lei. Screening Status and Research Progress of Endometrial Cancer [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 644-649. |
[7] | REN Shu-qing, SONG Dian-rong, ZHANG Ji-wen, HUAI Qi-juan, ZHAO Lin, ZHANG Wei. Study on the Characteristics of Intrauterine Microbiota in Infertile Women with Poor Endometrial Receptivity [J]. Journal of International Obstetrics and Gynecology, 2023, 50(6): 704-710. |
[8] | WANG Ya-dong, GUO Yan, DING Yuan-yuan, ZHANG Xu, SHI Xiao-rong. Non-Puerperal Uterine Inversion in Adolescent: A Case Report and Literature Review [J]. Journal of International Obstetrics and Gynecology, 2023, 50(4): 477-480. |
[9] | WEI Xiao-yu, GUO Qiu-yan, ZHANG Guang-mei. Giant Uterine Myoma: A Case Report [J]. Journal of International Obstetrics and Gynecology, 2023, 50(4): 392-395. |
[10] | XI Xin-xin, ZHANG Lin-feng, LI Jia. Uterine Mammary-Type Myofibroblastoma: A Case Report and Literature Review [J]. Journal of International Obstetrics and Gynecology, 2023, 50(4): 396-399. |
[11] | WEN Xin, WANG Bo, MA Xiao-xin. Research Progress of Histone Methylation Modification in Endometrial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2023, 50(1): 1-5. |
[12] | XU Qian, WANG Xin. Clinical Analysis of 22 Cases of Parasitic Leiomyoma [J]. Journal of International Obstetrics and Gynecology, 2023, 50(1): 39-42. |
[13] | YANG Xu, ZHENG Ying, CHEN Si-jing. The Experience of Transumbilical Laparoendoscople Single-Site Surgical Treatment by A Case of Accidental Detection of Low-Grade Endometrial Stromal Sarcoma [J]. Journal of International Obstetrics and Gynecology, 2023, 50(1): 50-53. |
[14] | LIU Hai-hong, SHI Xiao-rong. Research Progress of High-Intensity Focused Ultrasound in the Treatment of Uterine Fibroids [J]. Journal of International Obstetrics and Gynecology, 2022, 49(5): 540-544. |
[15] | ZHU Shu, ZHANG Hui-yuan, XU Wei, WANG Cong, WANG Xiu-li. A Case of Uterine Mesothelial Cyst Misdiagnosed as Leiomyoma with Cystic Degeneration [J]. Journal of International Obstetrics and Gynecology, 2022, 49(5): 556-559. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||