Journal of International Obstetrics and Gynecology ›› 2024, Vol. 51 ›› Issue (6): 648-653.doi: 10.12280/gjfckx.20240767
• Research on Gynecological Malignancies: Review • Previous Articles Next Articles
Received:
2024-08-26
Published:
2024-12-15
Online:
2024-12-16
Contact:
DAI Lan, E-mail: CHEN Zhi-ru, DAI Lan. Research Progress of the Relationship between Chemoradiotherapy-Induced Tumor Cell Death and Tumor Repopulation[J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 648-653.
Add to citation manager EndNote|Ris|BibTeX
[1] | Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3):229-263. doi: 10.3322/caac.21834. |
[2] |
Cheng J, He S, Wang M, et al. The Caspase-3/PKCδ/Akt/VEGF-A Signaling Pathway Mediates Tumor Repopulation during Radiotherapy[J]. Clin Cancer Res, 2019, 25(12):3732-3743. doi: 10.1158/1078-0432.CCR-18-3001.
pmid: 30890550 |
[3] | Corsi F, Capradossi F, Pelliccia A, et al. Apoptosis as Driver of Therapy-Induced Cancer Repopulation and Acquired Cell-Resistance (CRAC): A Simple In Vitro Model of Phoenix Rising in Prostate Cancer[J]. Int J Mol Sci, 2022, 23(3):1152. doi: 10.3390/ijms23031152. |
[4] | Ling R, Wang J, Fang Y, et al. HDAC-an important target for improving tumor radiotherapy resistance[J]. Front Oncol, 2023, 13:1193637. doi: 10.3389/fonc.2023.1193637. |
[5] | Cui L, Zhao Y, Pan Y, et al. Chemotherapy induces ovarian cancer cell repopulation through the caspase 3-mediated arachidonic acid metabolic pathway[J]. Onco Targets Ther, 2017, 10:5817-5826.doi: 10.2147/OTT.S150456.Erratum in: Onco Targets Ther, 2022, 15:1503-1504. doi: 10.2147/OTT.S397709. |
[6] | Feng X, Zhu F, Dai L, et al. Caspase-3 in glioma indicates an unfavorable prognosis by involving surrounding angiogenesis and tumor cell repopulation[J]. J Neurooncol, 2023, 163(2):313-325. doi: 10.1007/s11060-023-04339-x. |
[7] | Li F, Huang Q, Chen J, et al. Apoptotic cells activate the "phoenix rising" pathway to promote wound healing and tissue regeneration[J]. Sci Signal, 2010, 3(110):ra13. doi: 10.1126/scisignal.2000634. |
[8] | Asadi M, Taghizadeh S, Kaviani E, et al. Caspase-3: Structure, function, and biotechnological aspects[J]. Biotechnol Appl Biochem, 2022, 69(4):1633-1645. doi: 10.1002/bab.2233. |
[9] | Zhao Y, Cui L, Pan Y, et al. Berberine inhibits the chemotherapy-induced repopulation by suppressing the arachidonic acid metabolic pathway and phosphorylation of FAK in ovarian cancer[J]. Cell Prolif, 2017, 50(6):e12393. doi: 10.1111/cpr.12393. |
[10] |
Zhang F, Jia Y, Zheng X, et al. Janus nanocarrier-based co-delivery of doxorubicin and berberine weakens chemotherapy-exacerbated hepatocellular carcinoma recurrence[J]. Acta Biomater, 2019, 100:352-364. doi: 10.1016/j.actbio.2019.09.034.
pmid: 31563690 |
[11] |
Yu Y, Tian L, Feng X, et al. eIF4E-phosphorylation-mediated Sox2 upregulation promotes pancreatic tumor cell repopulation after irradiation[J]. Cancer Lett, 2016, 375(1):31-38. doi: 10.1016/j.canlet.2016.02.052.
pmid: 26945967 |
[12] | Brina D, Ponzoni A, Troiani M, et al. The Akt/mTOR and MNK/eIF4E pathways rewire the prostate cancer translatome to secrete HGF, SPP1 and BGN and recruit suppressive myeloid cells[J]. Nat Cancer, 2023, 4(8):1102-1121. doi: 10.1038/s43018-023-00594-z. |
[13] | Fan A, Gao M, Tang X, et al. HMGB1/RAGE axis in tumor development: unraveling its significance[J]. Front Oncol, 2024, 14:1336191. doi: 10.3389/fonc.2024.1336191. |
[14] |
Wang Y, Zhao M, He S, et al. Necroptosis regulates tumor repopulation after radiotherapy via RIP1/RIP3/MLKL/JNK/IL8 pathway[J]. J Exp Clin Cancer Res, 2019, 38(1):461. doi: 10.1186/s13046-019-1423-5.
pmid: 31706322 |
[15] |
Lin P, Lin C, He R, et al. TRAF6 regulates the abundance of RIPK1 and inhibits the RIPK1/RIPK3/MLKL necroptosis signaling pathway and affects the progression of colorectal cancer[J]. Cell Death Dis, 2023, 14(1):6. doi: 10.1038/s41419-022-05524-y.
pmid: 36604411 |
[16] | Zhang LQ, Sun L, Zhou YQ, et al. Pentacyclic triterpene-amino acid derivatives induced apoptosis and autophagy in tumor cells, affected the JNK and PI3K/AKT/mTOR pathway[J]. Bioorg Med Chem, 2023, 94:117478. doi: 10.1016/j.bmc.2023.117478. |
[17] | You B, Xia T, Gu M, et al. AMPK-mTOR-Mediated Activation of Autophagy Promotes Formation of Dormant Polyploid Giant Cancer Cells[J]. Cancer Res, 2022, 82(5):846-858. doi: 10.1158/0008-5472.CAN-21-2342. |
[18] | Dai Z, Liu WC, Chen XY, et al. Gasdermin D-mediated pyroptosis: mechanisms, diseases, and inhibitors[J]. Front Immunol, 2023, 14:1178662. doi: 10.3389/fimmu.2023.1178662. |
[19] | Wang YL, Wu WR, Lin PL, et al. The Functions of PCNA in Tumor Stemness and Invasion[J]. Int J Mol Sci, 2022, 23(10):5679. doi: 10.3390/ijms23105679. |
[20] |
Avalle L, Raggi L, Monteleone E, et al. STAT3 induces breast cancer growth via ANGPTL4, MMP13 and STC1 secretion by cancer associated fibroblasts[J]. Oncogene, 2022, 41(10):1456-1467. doi: 10.1038/s41388-021-02172-y.
pmid: 35042959 |
[21] | Fang Z, Meng Q, Xu J, et al. Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives[J]. Cancer Commun(Lond), 2023, 43(1):3-41. doi: 10.1002/cac2.12392. |
[22] | Wang JQ, Dong Y, Feng ZM, et al. Ginsenoside Re Attenuates Cisplatin-Induced Intestinal Toxicity via Suppressing GSK-3β-Dependent Wnt/β-Catenin Signaling Pathway In Vivo and In Vitro[J]. Am J Chin Med, 2023, 51(2):407-424. doi: 10.1142/S0192415X23500210. |
[23] |
Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives[J]. Mol Cancer, 2021, 20(1):131. doi: 10.1186/s12943-021-01428-1.
pmid: 34635121 |
[24] | Xiao L, Zhu H, Shu J, et al. Overexpression of TGF-β1 and SDF-1 in cervical cancer-associated fibroblasts promotes cell growth, invasion and migration[J]. Arch Gynecol Obstet, 2022, 305(1):179-192. doi: 10.1007/s00404-021-06137-0. |
[25] | Suh J, Kim DH, Lee YH, et al. Fibroblast growth factor-2, derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling[J]. Mol Carcinog, 2020, 59(9):1028-1040. doi: 10.1002/mc.23233. |
[26] |
Ershaid N, Sharon Y, Doron H, et al. NLRP3 inflammasome in fibroblasts links tissue damage with inflammation in breast cancer progression and metastasis[J]. Nat Commun, 2019, 10(1):4375. doi: 10.1038/s41467-019-12370-8.
pmid: 31558756 |
[27] | Sumitomo R, Menju T, Shimazu Y, et al. M2-like tumor-associated macrophages promote epithelial-mesenchymal transition through the transforming growth factor β/Smad/zinc finger e-box binding homeobox pathway with increased metastatic potential and tumor cell proliferation in lung squamous cell carcinoma[J]. Cancer Sci, 2023, 114(12):4521-4534. doi: 10.1111/cas.15987. |
[28] |
Xu M, Zhou C, Weng J, et al. Tumor associated macrophages-derived exosomes facilitate hepatocellular carcinoma malignance by transferring lncMMPA to tumor cells and activating glycolysis pathway[J]. J Exp Clin Cancer Res, 2022, 41(1):253. doi: 10.1186/s13046-022-02458-3.
pmid: 35986343 |
[29] | Basu A, Ramamoorthi G, Albert G, et al. Differentiation and Regulation of T(H) Cells: A Balancing Act for Cancer Immunotherapy[J]. Front Immunol, 2021, 12:669474. doi: 10.3389/fimmu.2021.669474. |
[30] |
Jiang Y, Yuan Y, Chen M, et al. PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression[J]. Theranostics, 2021, 11(18):9162-9176. doi: 10.7150/thno.59605.
pmid: 34522232 |
[31] |
Zhong N, Zhuang W, Huang Q, et al. Apatinib inhibits the growth of small cell lung cancer via a mechanism mediated by VEGF, PI3K/Akt and Ki-67/CD31[J]. J Cell Mol Med, 2021, 25(21):10039-10048. doi: 10.1111/jcmm.16926.
pmid: 34590406 |
[32] | Mou J, Li C, Zheng Q, et al. Research progress in tumor angiogenesis and drug resistance in breast cancer[J]. Cancer Biol Med, 2024, 21(7):571-585. doi: 10.20892/j.issn.2095-3941.2023.0515. |
[1] | ZHANG Ye, CHEN Qiao-yun, ZHAO Jia-yi, CHEN Lu, LIU Jian-rong. Progress in the Application of Nanoparticles in the Prevention and Treatment of Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2025, 52(1): 8-12. |
[2] | LI Dan-ning, WANG Xi-peng. Research Progress on Utilizing Single-Cell Sequencing Technology to Investigate Tumor Immune Microenvironment in Epithelial Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2024, 51(6): 654-658. |
[3] | ZHANG Jian-nan, GUO Xin, GUO Nan, NING Wen-ting, YU Hong-xin, SHANG Hai-xia. Application of Microfluidic Technology in Ovarian Cancer Disease Modeling, Drug Evaluation, and Precision Medicine [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 560-565. |
[4] | BAI Yao-jun, HU Xiao-hong, LI Hong-li, LIU Chang. Research Progress on Lymphocyte Activation Gene-3 in Gynecological Tumors [J]. Journal of International Obstetrics and Gynecology, 2024, 51(5): 566-571. |
[5] | ZHANG Jing-yi, LIU Dong-zhe, CHEN Xiu-hui. Research Advances of Exosomes in Angiogenesis of Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 370-374. |
[6] | ZHANG Yi-tian, LI Xiao-li. The Role and Treatment of Mitochondria in Endometrial Carcinoma [J]. Journal of International Obstetrics and Gynecology, 2024, 51(4): 375-379. |
[7] | WANG Yi-xuan, ZHANG Shao-hua, WANG Zan-hong. Effect of CD2 Gene on Immune Infiltration in Tumor Microenvironment of Ovarian Cancer [J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 290-296. |
[8] | YU Zhi-cheng, WANG Hong-bo. Reseach Progress of Cancer-Associated Fibroblasts in Endometrial Cancer [J]. Journal of International Obstetrics and Gynecology, 2023, 50(1): 16-19. |
[9] | QU Xing, HAN Feng-jiao, MA Li, WANG Xiao-hui. Prognostic Indicators of Ovarian Cancer in Immunotherapy [J]. Journal of International Obstetrics and Gynecology, 2022, 49(6): 626-629. |
[10] | ZHAO Yu-lin, WANG Yong-hong. The Relationship between mTOR Signaling Pathway and Preeclampsia [J]. Journal of International Obstetrics and Gynecology, 2022, 49(6): 655-658. |
[11] | WANG Fang, YANG Tao, WU Zhen-zhen, WANG Hui-ling. Application of Immune Checkpoint Inhibitor in Gynecological Malignant Tumors [J]. Journal of International Obstetrics and Gynecology, 2022, 49(5): 519-523. |
[12] | HAN Pin, WEN Jing, LIU Yu-chen, SUN Yi, WANG Yuan-pei, REN Fang. Research Progress of PD-1/PD-L1 Inhibitors in Patients with Recurrent or Metastatic Cervical Cancer [J]. Journal of International Obstetrics and Gynecology, 2022, 49(4): 393-397. |
[13] | GE Yan-jun, ZHANG Yu-chen, WANG Xin-tao, ZHU Hai-yan. The Role of Metabolomics in Cervical Cancer Screening and Early Diagnosis [J]. Journal of International Obstetrics and Gynecology, 2022, 49(3): 302-306. |
[14] | MAO Ruo-nan, JIANG Wei. Progress in the Clinical Application of PD-1/PD-L1 Inhibitor in the Treatment of Ovarian Neoplasms [J]. Journal of International Obstetrics and Gynecology, 2021, 48(6): 605-609. |
[15] | HE Hong-yue, TAN Wen-hua. Research Progress of RUNX3 in Gynecological Oncology [J]. Journal of International Obstetrics and Gynecology, 2021, 48(4): 438-442. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||