
国际妇产科学杂志 ›› 2021, Vol. 48 ›› Issue (6): 696-699.doi: 10.12280/gjfckx.20210358
收稿日期:2021-04-20
出版日期:2021-12-15
发布日期:2021-12-30
通讯作者:
卢美松
E-mail:lumeisong0417@163.com
LI Qian-qian, TANG Xiao-han, LU Mei-song△(
)
Received:2021-04-20
Published:2021-12-15
Online:2021-12-30
Contact:
LU Mei-song
E-mail:lumeisong0417@163.com
摘要:
子宫内膜异位症(EMs)是一种严重影响女性生活质量与生育能力的常见妇科良性疾病,其复杂的病理生理学机制尚未明确。尽管EMs的诊断标准与治疗方案在不断改进,但其高发病率与低治愈率却没有明显改善。维甲酸(RA)作为维生素A的活性代谢产物,参与各种细胞生长、分化与器官发生的过程。RA在EMs中因代谢缺陷而呈异常低水平,且大量研究显示 RA信号缺陷可能通过提高局部内膜雌激素水平、抑制凋亡与自噬、促炎与异常免疫调节等方式参与EMs的发生、发展,因此RA及其衍生物有望成为EMs治疗的新药物。就EMs中RA异常代谢、RA信号缺陷促进EMs发生和发展的可能机制以及RA在EMs中的治疗潜力进行了综述,以期为EMs的发病机制与治疗提供新思路。
李千千, 汤小晗, 卢美松. 维甲酸在子宫内膜异位症中的研究进展[J]. 国际妇产科学杂志, 2021, 48(6): 696-699.
LI Qian-qian, TANG Xiao-han, LU Mei-song. The Research Progress of Retinoic Acid in Endometriosis[J]. Journal of International Obstetrics and Gynecology, 2021, 48(6): 696-699.
| [1] |
Iskakova M, Karbyshev M, Piskunov A, et al. Nuclear and extranuclear effects of vitamin A[J]. Can J Physiol Pharmacol, 2015,93(12):1065-1075. doi: 10.1139/cjpp-2014-0522.
doi: 10.1139/cjpp-2014-0522 |
| [2] |
Jiang Y, Chen L, Taylor RN, et al. Physiological and pathological implications of retinoid action in the endometrium[J]. J Endocrinol, 2018,236(3):R169-R188. doi: 10.1530/JOE-17-0544.
doi: 10.1530/JOE-17-0544 |
| [3] |
Zondervan KT, Becker CM, Missmer SA. Endometriosis[J]. N Engl J Med, 2020,382(13):1244-1256. doi: 10.1056/NEJMra1810764.
doi: 10.1056/NEJMra1810764 |
| [4] |
Yamagata Y, Takaki E, Shinagawa M, et al. Retinoic acid has the potential to suppress endometriosis development[J]. J Ovarian Res, 2015,8:49. doi: 10.1186/s13048-015-0179-6.
doi: 10.1186/s13048-015-0179-6 |
| [5] |
Anderson G. Endometriosis Pathoetiology and Pathophysiology: Roles of Vitamin A, Estrogen, Immunity, Adipocytes, Gut Microbiome and Melatonergic Pathway on Mitochondria Regulation[J]. Biomol Concepts, 2019,10(1):133-149. doi: 10.1515/bmc-2019-0017.
doi: 10.1515/bmc-2019-0017 pmid: 31339848 |
| [6] |
Taylor RN, Kane MA, Sidell N. Pathogenesis of Endometriosis: Roles of Retinoids and Inflammatory Pathways[J]. Semin Reprod Med, 2015,33(4):246-256. doi: 10.1055/s-0035-1554920.
doi: 10.1055/s-0035-1554920 |
| [7] |
Pavone ME, Dyson M, Reirstad S, et al. Endometriosis expresses a molecular pattern consistent with decreased retinoid uptake, metabolism and action[J]. Hum Reprod, 2011,26(8):2157-2164. doi: 10.1093/humrep/der172.
doi: 10.1093/humrep/der172 |
| [8] |
Kedishvili NY. Retinoic Acid Synbook and Degradation[M]. NIH Public Access, 2016. doi: 10.1007/978-94-024-0945-1_5.
doi: 10.1007/978-94-024-0945-1_5 |
| [9] |
Roberts C. Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes[J]. J Dev Biol, 2020,8(1):6. doi: 10.3390/jdb8010006.
doi: 10.3390/jdb8010006 |
| [10] |
Amann PM, Eichmüller SB, Schmidt J, et al. Regulation of gene expression by retinoids[J]. Curr Med Chem, 2011,18(9):1405-1412. doi: 10.2174/092986711795029618.
doi: 10.2174/092986711795029618 pmid: 21366525 |
| [11] |
Napoli JL. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases[J]. Pharmacol Ther, 2017,173:19-33. doi: 10.1016/j.pharmthera.2017.01.004.
doi: 10.1016/j.pharmthera.2017.01.004 |
| [12] |
Pierzchalski K, Taylor RN, Nezhat C, et al. Retinoic acid biosynjournal is impaired in human and murine endometriosis[J]. Biol Reprod, 2014,91(4):84. doi: 10.1095/biolreprod.114.119677.
doi: 10.1095/biolreprod.114.119677 pmid: 25143356 |
| [13] |
Badary DM, Abou-Taleb H. Vitamin D receptor and cellular retinol-binding protein-1 immunohistochemical expression in normal, hyperplastic and neoplastic endometrium: Possible diagnostic and therapeutic implications[J]. Ann Diagn Pathol, 2020,48:151569. doi: 10.1016/j.anndiagpath.2020.151569.
doi: S1092-9134(20)30112-X pmid: 32805516 |
| [14] |
Wang CCN, Jin J, Chang JG, et al. Identification of most influential co-occurring gene suites for gastrointestinal cancer using biomedical literature mining and graph-based influence maximization[J]. BMC Med Inform Decis Mak, 2020,20(1):208. doi: 10.1186/s12911-020-01227-6.
doi: 10.1186/s12911-020-01227-6 |
| [15] |
Pavone ME, Reierstad S, Sun H, et al. Altered retinoid uptake and action contributes to cell survival in endometriosis[J]. J Clin Endocrinol Metab, 2010,95(11):E300-E309. doi: 10.1210/jc.2010-0459.
doi: 10.1210/jc.2010-0459 |
| [16] |
Enikeev AD, Komelkov AV, Axelrod ME, et al. CRABP1 and CRABP2 Protein Levels Correlate with Each Other but Do Not Correlate with Sensitivity of Breast Cancer Cells to Retinoic Acid[J]. Biochemistry (Mosc), 2021,86(2):217-229. doi: 10.1134/S0006297921020103.
doi: 10.1134/S0006297921020103 |
| [17] |
Ghyselinck NB, Duester G. Retinoic acid signaling pathways[J]. Development, 2019,146(13):dev167502. doi: 10.1242/dev.167502.
doi: 10.1242/dev.167502 |
| [18] |
Larange A, Cheroutre H. Retinoic Acid and Retinoic Acid Receptors as Pleiotropic Modulators of the Immune System[J]. Annu Rev Immunol, 2016,34:369-394. doi: 10.1146/annurev-immunol-041015-055427.
doi: 10.1146/annurev-immunol-041015-055427 |
| [19] |
Gibson DA, Simitsidellis I, Collins F, et al. Androgens, oestrogens and endometrium: a fine balance between perfection and pathology[J]. J Endocrinol, 2020,246(3):R75-R93. doi: 10.1530/JOE-20-0106.
doi: 10.1530/JOE-20-0106 |
| [20] |
Cheng YH, Yin P, Xue Q, et al. Retinoic acid (RA) regulates 17beta-hydroxysteroid dehydrogenase type 2 expression in endometrium: interaction of RA receptors with specificity protein(SP) 1/SP3 for estradiol metabolism[J]. J Clin Endocrinol Metab, 2008,93(5):1915-1923. doi: 10.1210/jc.2007-1536.
doi: 10.1210/jc.2007-1536 |
| [21] |
Mori T, Ito F, Matsushima H, et al. Dienogest reduces HSD17β1 expression and activity in endometriosis[J]. J Endocrinol, 2015,225(2):69-76. doi: 10.1530/JOE-15-0052.
doi: 10.1530/JOE-15-0052 |
| [22] |
Pavone ME, Malpani S, Dyson M, et al. Altered retinoid signaling compromises decidualization in human endometriotic stromal cells[J]. Reproduction, 2017,154(3):207-216. doi: 10.1530/REP-16-0592.
doi: 10.1530/REP-16-0592 pmid: 28592664 |
| [23] |
Lu H, Li S, Wu Q. Retinoic acid regulates endometriotic stromal cell growth through upregulation of Beclin1[J]. Arch Gynecol Obstet, 2018,297(1):93-99. doi: 10.1007/s00404-017-4549-8.
doi: 10.1007/s00404-017-4549-8 |
| [24] |
Chen CX, Luo KJ, Yang JP, et al. Connexins and cAMP Cross-Talk in Cancer Progression and Metastasis[J]. Cancers (Basel), 2020,13(1):58. doi: 10.3390/cancers13010058.
doi: 10.3390/cancers13010058 |
| [25] |
Yu J, Berga SL, Zou W, et al. Human Endometrial Stromal Cell Differentiation is Stimulated by PPARβ/δ Activation: New Targets for Infertility?[J]. J Clin Endocrinol Metab, 2020,105(9):2983-2995. doi: 10.1210/clinem/dgaa413.
doi: 10.1210/clinem/dgaa413 |
| [26] |
Wieser F, Wu J, Shen Z, et al. Retinoic acid suppresses growth of lesions, inhibits peritoneal cytokine secretion, and promotes macrophage differentiation in an immunocompetent mouse model of endometriosis[J]. Fertil Steril, 2012,97(6):1430-1437. doi: 10.1016/j.fertnstert.2012.03.004.
doi: 10.1016/j.fertnstert.2012.03.004 |
| [27] |
Zhou WJ, Yang HL, Shao J, et al. Anti-inflammatory cytokines in endometriosis[J]. Cell Mol Life Sci, 2019,76(11):2111-2132. doi: 10.1007/s00018-019-03056-x.
doi: 10.1007/s00018-019-03056-x |
| [28] |
Kim SJ, Park JH, Lee SA, et al. All-trans retinoic acid regulates TGF-β1-induced extracellular matrix production via p38, JNK, and NF-κB-signaling pathways in nasal polyp-derived fibroblasts[J]. Int Forum Allergy Rhinol, 2020,10(5):636-645. doi: 10.1002/alr.22525.
doi: 10.1002/alr.22525 |
| [29] |
Takahashi N, Saito D, Hasegawa S, et al. Vitamin A in health care: Suppression of growth and induction of differentiation in cancer cells by vitamin A and its derivatives and their mechanisms of action[J]. Pharmacol Ther, 2021 Jun 24:107942. Epub ahead of print. doi: 10.1016/j.pharmthera.2021.107942.
doi: 10.1016/j.pharmthera.2021.107942 |
| [30] |
Ozer H, Boztosun A, Açmaz G, et al. The efficacy of bevacizumab, sorafenib, and retinoic acid on rat endometriosis model[J]. Reprod Sci, 2013,20(1):26-32. doi: 10.1177/1933719112452941.
doi: 10.1177/1933719112452941 |
| [31] |
Pavone ME, Malpani SS, Dyson M, et al. Fenretinide: A Potential Treatment for Endometriosis[J]. Reprod Sci, 2016,23(9):1139-1147. doi: 10.1177/1933719116632920.
doi: 10.1177/1933719116632920 pmid: 26919975 |
| [32] |
Dasgupta K, Lim P, Reedstorm H. A Common Drug With a Dangerous Side Effect: Acute Rhabdomyolysis Caused by the Synergistic Effect of Isotretinoin and Exercise in an Adolescent[J]. Cureus, 2020,12(10):e10929. doi: 10.7759/cureus.10929.
doi: 10.7759/cureus.10929 |
| [1] | 杨洋, 马媛, 陈宥艺, 赵静, 马文娟. 重度子痫前期患者血清外泌体对人正常蜕膜免疫细胞功能的影响[J]. 国际妇产科学杂志, 2025, 52(2): 143-152. |
| [2] | 陈晓娟, 张艳馨. 妊娠合并血友病A患者足月分娩一例[J]. 国际妇产科学杂志, 2025, 52(2): 158-160. |
| [3] | 张昊晟, 魏芳. Nectin-4在妇科恶性肿瘤中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 165-168. |
| [4] | 林环宇, 邵小光, 路旭宏, 王秋月, 魏巍, 佟春艳. Web of Science核心数据库2004—2024年女性恶性肿瘤患者生育力保存的研究现状及热点[J]. 国际妇产科学杂志, 2025, 52(2): 180-186. |
| [5] | 陈淑婉, 邓高丕, 袁烁. 子宫伴奇异形核平滑肌瘤一例[J]. 国际妇产科学杂志, 2025, 52(2): 187-190. |
| [6] | 曹秀蓉, 周文柏, 范香, 王逸斐, 朱鹏峰. 单细胞RNA测序解析子宫内膜异位症血管生成机制[J]. 国际妇产科学杂志, 2025, 52(2): 199-205. |
| [7] | 殷婷, 丛慧芳. 子宫内膜异位症与痛觉敏化的免疫学研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 206-210. |
| [8] | 江爱美, 张信美. 腹壁子宫内膜异位症的治疗进展[J]. 国际妇产科学杂志, 2025, 52(2): 211-216. |
| [9] | 白耀俊, 王思瑶, 令菲菲, 张森淮, 李红丽, 刘畅. Trop-2及靶向Trop-2抗体偶联药物在妇科恶性肿瘤中的应用进展[J]. 国际妇产科学杂志, 2025, 52(1): 1-7. |
| [10] | 侯春艳, 杜秀萍. 妊娠中晚期自发性子宫破裂二例[J]. 国际妇产科学杂志, 2025, 52(1): 110-113. |
| [11] | 钟佩蕖, 招丽坚, 邹欣欣. 残角子宫妊娠行期待治疗至妊娠晚期一例[J]. 国际妇产科学杂志, 2025, 52(1): 114-116. |
| [12] | 张云凤, 张宛玥, 卢悦, 王阳阳, 井佳雨, 牟婧祎, 王悦. ARID1A与PIK3CA突变在卵巢子宫内膜异位症恶变中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 19-22. |
| [13] | 潘琪, 冯同富, 金晶, 吴莺, 杜欣. 腹腔镜切除成人腹膜后巨大成熟性畸胎瘤一例[J]. 国际妇产科学杂志, 2025, 52(1): 28-31. |
| [14] | 贾炎峰, 吴珍珍, 王维红, 王玥元, 李娟. 原发性卵巢腺鳞癌一例[J]. 国际妇产科学杂志, 2025, 52(1): 32-36. |
| [15] | 宋丽芳, 吴珍珍, 毛宝宏, 赵小丽, 刘青. 卵巢癌腹股沟淋巴结孤立转移一例[J]. 国际妇产科学杂志, 2025, 52(1): 37-41. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||