[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660
|
[2] |
Abu-Rustum NR, Yashar CM, Bean S, et al. NCCN Guidelines Insights: Cervical Cancer, Version 1.2020: Featured Updates to the NCCN Guidelines[J]. JNCCN, 2020, 18(6):660-666. doi: 10.6004/jnccn.2020.0027.
doi: 10.6004/jnccn.2020.0027
|
[3] |
Harkenrider MM, Alite F, Silva SR, et al. Image-Based Brachytherapy for the Treatment of Cervical Cancer[J]. Int J Radiat Oncol Biol Phys, 2015, 92(4):921-934. doi: 10.1016/j.ijrobp.2015.03.010.
doi: 10.1016/j.ijrobp.2015.03.010
|
[4] |
Serban M, Kirisits C, de Leeuw A, et al. Ring Versus Ovoids and Intracavitary Versus Intracavitary-Interstitial Applicators in Cervical Cancer Brachytherapy: Results From the EMBRACE I Study[J]. Int J Radiat Oncol Biol Phys, 2020, 106(5):1052-1062. doi: 10.1016/j.ijrobp.2019.12.019.
doi: 10.1016/j.ijrobp.2019.12.019
|
[5] |
Tambas M, Tavli B, Bilici N, et al. Computed Tomography-Guided Optimization of Needle Insertion for Combined Intracavitary/Interstitial Brachytherapy With Utrecht Applicator in Locally Advanced Cervical Cancer[J]. Pract Radiat Oncol, 2021, 11(4):272-281. doi: 10.1016/j.prro.2021.01.008.
doi: 10.1016/j.prro.2021.01.008
|
[6] |
Kissel M, Fournier-Bidoz N, Henry O, et al. Venezia applicator with oblique needles improves clinical target volume coverage in distal parametrial tumor residue compared to parallel needles only[J]. J Contemp Brachytherapy, 2021, 13(1):24-31. doi: 10.5114/jcb.2021.103583.
doi: 10.5114/jcb.2021.103583
|
[7] |
Liu Y, Jiang P, Zhang H, et al. Safety and efficacy of 3D-printed templates assisted CT-guided radioactive iodine-125 seed implantation for the treatment of recurrent cervical carcinoma after external beam radiotherapy[J]. J Gynecol Oncol, 2021, 32(2):e15. doi: 10.3802/jgo.2021.32.e15.
doi: 10.3802/jgo.2021.32.e15
pmid: 33300313
|
[8] |
Hull Charles W. The Birth of 3D Printing: IRI Achievement Award Address[J]. Res Technol Management, 2015, 58(6):25-30. doi: 10.5437/08956308x5806067.
doi: 10.5437/08956308x5806067
|
[9] |
Malik HH, Darwood AR, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications[J]. J Surg Res, 2015, 199(2):512-522. doi: 10.1016/j.jss.2015.06.051.
doi: 10.1016/j.jss.2015.06.051
pmid: 26255224
|
[10] |
Xue R, Lai Q, Sun S, et al. Application of Three-Dimensional Printing Technology for Improved Orbital-Maxillary-Zygomatic Reconstruction[J]. J Craniofac Surg, 2019, 30(2):e127-e131. doi: 10.1097/SCS.0000000000005031.
doi: 10.1097/SCS.0000000000005031
|
[11] |
Guo C, Zhang Y, Yang L, et al. The Application and Operation-Effect Analysis for Complex Tibial Plateau Fractures with 3D Printing Technique[J]. Int J Clin Med, 2019, 10(3):101-108. doi: 10.4236/ijcm.2019.103010.
doi: 10.4236/ijcm.2019.103010
|
[12] |
Campelo S, Subashi E, Meltsner SG, et al. Multimaterial three-dimensional printing in brachytherapy: Prototyping teaching tools for interstitial and intracavitary procedures in cervical cancers[J]. Brachytherapy, 2020, 19(6):767-776. doi: 10.1016/j.brachy.2020.07.013.
doi: 10.1016/j.brachy.2020.07.013
pmid: 32893145
|
[13] |
Bartellas M, Ryan S, Doucet G, et al. Three-Dimensional Printing of a Hemorrhagic Cervical Cancer Model for Postgraduate Gynecological Training[J]. Cureus, 2017, 9(1):e950. doi: 10.7759/cureus.950.
doi: 10.7759/cureus.950
|
[14] |
Baek MH, Kim DY, Kim N, et al. Incorporating a 3-dimensional printer into the management of early-stage cervical cancer[J]. J Surg Oncol, 2016, 114(2):150-152. doi: 10.1002/jso.24292.
doi: 10.1002/jso.24292
|
[15] |
Wang F, Wang H, Luo H, et al. Is 3D printing-gided three-dimensional brachytherapy suitable for cervical cancer: From one single research institute?[J]. Eur J Gynaecol Oncol, 2020, 41(4):591-597. doi: 10.31083/J.EJGO.2020.04.4932.
doi: 10.31083/J.EJGO.2020.04.4932
|
[16] |
王凤玫, 程惠华, 冯静, 等. 3D打印技术引导宫颈癌个体化近距离放疗应用研究[J]. 中华肿瘤防治杂志, 2020, 27(12):1003-1007. doi: 10.16073/j.cnki.cjcpt.2020.12.14.
doi: 10.16073/j.cnki.cjcpt.2020.12.14
|
[17] |
Abdollahi S, Rafat Motavali L, Miri Hakimabad SH, et al. Statistical and dosimetric analysis of air gaps in vaginal cuff brachytherapy[J]. Rad Oncol, 2017, 123(5):978-979. doi: 10.1016/S0167-8140(17)32143-6.
doi: 10.1016/S0167-8140(17)32143-6
|
[18] |
Yan J, Qin X, Zhang F, et al. Comparing multichannel cylinder and 3D-printed applicators for vaginal cuff brachytherapy with preliminary exploration of post-hysterectomy vaginal morphology[J]. J Contemp Brachyther, 2021, 13(6):641-648. doi:10.5114/jcb.2021.112115.
doi: 10.5114/jcb.2021.112115
pmid: 35079250
|
[19] |
Qin X, Zhang F, Hou X, et al. Efficacy and safety of a 3D-printed applicator for vaginal brachytherapy in patients with central pelvic-recurrent cervical cancer after primary hysterectomy[J]. Brachytherapy, 2022, 21(2):193-201. doi: 10.1016/j.brachy.2021.11.004.
doi: 10.1016/j.brachy.2021.11.004
|
[20] |
唐成琼, 刘江平, 古丽娜·库尔班, 等. 3D打印多通道施源器在宫颈癌术后患者近距离治疗中研究[J]. 中华放射肿瘤学杂志, 2022, 31(5):445-449. doi: 10.3760/cma.j.cn113030-20210712-00257.
doi: 10.3760/cma.j.cn113030-20210712-00257
|
[21] |
陶娜, 安永伟, 欧阳水根, 等. 3D打印阴道模型塞应用在宫颈癌近距离治疗中的剂量学研究[J]. 辐射研究与辐射工艺学报, 2020, 38(4):51-56. doi: 10.11889/j.1000-3436.2020.rrj.38.040302.
doi: 10.11889/j.1000-3436.2020.rrj.38.040302
|
[22] |
杨文翠, 宋丽娟, 张骞文, 等. 局部晚期宫颈癌应用3D打印阴道模型塞插植治疗的剂量学和近期疗效观察[J]. 临床肿瘤学杂志,2019, 24(10):925-929. doi: 1009-0460(2019)10-0925-05.
doi: 1009-0460(2019)10-0925-05
|
[23] |
王彬冰, 郑光浩, 张翔, 等. 经阴道3D打印个体化模板在宫颈癌后装治疗中的应用价值研究[J]. 中华放射肿瘤学杂志, 2020, 29(4):283-288. doi: 10.3760/cma.j.cn113030-20190929-00007.
doi: 10.3760/cma.j.cn113030-20190929-00007
|
[24] |
Logar H, Hudej R, Šegedin B. Development and assessment of 3D-printed individual applicators in gynecological MRI-guided brachytherapy[J]. J Contemp Brachytherapy, 2019, 11(2):128-136. doi: 10.5114/jcb.2019.84741.
doi: 10.5114/jcb.2019.84741
|
[25] |
Zhao Z, Tang X, Mao Z, et al. The design of an individualized cylindrical vaginal applicator with oblique guide holes using 3D modeling and printing technologies[J]. J Contemp Brachytherapy, 2019, 11(5):479-487. doi: 10.5114/jcb.2019.88441.
doi: 10.5114/jcb.2019.88441
|
[26] |
刘影, 郭昕, 韩东梅, 等. 宫颈残端癌应用3D打印施源器实施个体化自适应近距离放疗1例报道[J]. 中国实验诊断学, 2020, 24(9):1560-1562. doi: 10.3969/j.issn.1007-4287.2020.09.047.
doi: 10.3969/j.issn.1007-4287.2020.09.047
|
[27] |
Haie-Meder C, Pötter R, Van Limbergen E, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV[J]. Radiother Oncol, 2005, 74(3):235-245. doi: 10.1016/j.radonc.2004.12.015.
doi: 10.1016/j.radonc.2004.12.015
pmid: 15763303
|
[28] |
张永侠, 袁香坤, 苗珺珺, 等. 3D打印模板应用于局部晚期宫颈癌后装放疗的剂量学研究[J]. 中华放射医学与防护杂志, 2020, 40(7):519-523. doi: 10.3760/cma.j.issn.0254-5098.2020.07.005.
doi: 10.3760/cma.j.issn.0254-5098.2020.07.005
|
[29] |
Mazeron R, Castelnau-Marchand P, Dumas I, et al. Impact of treatment time and dose escalation on local control in locally advanced cervical cancer treated by chemoradiation and image-guided pulsed-dose rate adaptive brachytherapy[J]. Radiother Oncol, 2015, 114(2):257-263. doi: 10.1016/j.radonc.2014.11.045.
doi: 10.1016/j.radonc.2014.11.045
pmid: 25497872
|
[30] |
赵志鹏, 管薇, 赵红福, 等. 3D打印模板辅助标准化施源器在ⅢB期宫颈癌影像引导自适应近距离治疗中的应用[J]. 中华放射肿瘤学杂志, 2020, 29(8):661-665. doi: 10.3760/cma.j.cn113030-20200511-00246.
doi: 10.3760/cma.j.cn113030-20200511-00246
|
[31] |
李宁. 基于预计划的3D打印模板在宫颈癌组织间插植中的应用[D]. 长春: 吉林大学, 2019.
|