国际妇产科学杂志 ›› 2023, Vol. 50 ›› Issue (2): 121-126.doi: 10.12280/gjfckx.20220816
• 产科生理及产科疾病:综述 • 下一篇
收稿日期:
2022-10-10
出版日期:
2023-04-15
发布日期:
2023-04-24
通讯作者:
黄璐,E-mail:基金资助:
WU Ya-mei, LI Meng, LI Jia-wen, YING Hao, HUANG Lu()
Received:
2022-10-10
Published:
2023-04-15
Online:
2023-04-24
Contact:
HUANG Lu, E-mail: 摘要:
自噬是一种高度保守的胞内物质清除机制,具有维持细胞内稳态、促进代谢循环、维持能量平衡的作用,同时也是一个维系细胞生存的自稳定过程。研究表明自噬在妊娠滋养细胞分化、发育、侵入及重塑子宫螺旋动脉的过程中具有重要作用,其通过清除受损线粒体和内质网来维持细胞稳态,使妊娠得以正常维持。自噬贯穿于胎儿生长发育全过程,相关因子如Beclin-1、损伤调控自噬因子和微管蛋白轻链3B在胎盘中持续表达且在妊娠晚期仍处于较高水平。研究发现自噬功能异常与子痫前期、胎儿生长受限和早产等妊娠并发症密切相关,其中线粒体自噬发挥重要作用。
吴亚梅, 李濛, 李佳雯, 应豪, 黄璐. 自噬在胎儿生长发育及妊娠并发症中的作用[J]. 国际妇产科学杂志, 2023, 50(2): 121-126.
WU Ya-mei, LI Meng, LI Jia-wen, YING Hao, HUANG Lu. The Role of Autophagy in Fetal Growth Development and Pregnancy Complications[J]. Journal of International Obstetrics and Gynecology, 2023, 50(2): 121-126.
[1] |
Youle RJ, Narendra DP. Mechanisms of mitophagy[J]. Nat Rev Mol Cell Biol, 2011, 12(1):9-14. doi: 10.1038/nrm3028.
doi: 10.1038/nrm3028 |
[2] |
DE DUVE C. The lysosome[J]. Sci Am, 1963, 208:64-72. doi: 10.1038/scientificamerican0563-64.
doi: 10.1038/scientificamerican0563-64 pmid: 14025755 |
[3] |
Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae[J]. FEBS Lett, 1993, 333(1/2):169-174. doi: 10.1016/0014-5793(93)80398-e.
doi: 10.1016/0014-5793(93)80398-e |
[4] |
Yoshii SR, Mizushima N. Monitoring and Measuring Autophagy[J]. Int J Mol Sci, 2017, 18(9):1865. doi: 10.3390/ijms18091865.
doi: 10.3390/ijms18091865 |
[5] |
Ravanan P, Srikumar IF, Talwar P. Autophagy: The spotlight for cellular stress responses[J]. Life Sci, 2017, 188:53-67. doi: 10.1016/j.lfs.2017.08.029.
doi: S0024-3205(17)30423-X pmid: 28866100 |
[6] |
Zhang P, Ling L, Zheng Z, et al. ATG7-dependent and independent autophagy determine the type of treatment in lung cancer[J]. Pharmacol Res, 2021, 163:105324. doi: 10.1016/j.phrs.2020.105324.
doi: 10.1016/j.phrs.2020.105324 |
[7] |
Muir V, Sagadiev S, Liu S, et al. Transcriptomic analysis of pathways associated with ITGAV/alpha(v) integrin-dependent autophagy in human B cells[J]. Autophagy, 2023, 19(3):926-942. doi: 10.1080/15548627.2022.2113296.
doi: 10.1080/15548627.2022.2113296 |
[8] |
Valencia M, Kim SR, Jang Y, et al. Neuronal Autophagy: Characteristic Features and Roles in Neuronal Pathophysiology[J]. Biomol Ther(Seoul), 2021, 29(6):605-614. doi: 10.4062/biomolther.2021.012.
doi: 10.4062/biomolther.2021.012 |
[9] |
Bonam SR, Tranchant C, Muller S. Autophagy-Lysosomal Pathway as Potential Therapeutic Target in Parkinson′s Disease[J]. Cells, 2021, 10(12):3547. doi: 10.3390/cells10123547.
doi: 10.3390/cells10123547 |
[10] |
Zhang JJ, Chen KC, Zhou Y, et al. Evaluating the effects of mitochondrial autophagy flux on ginsenoside Rg2 for delaying D-galactose induced brain aging in mice[J]. Phytomedicine, 2022, 104:154341. doi: 10.1016/j.phymed.2022.154341.
doi: 10.1016/j.phymed.2022.154341 |
[11] |
Zeng M, Qi L, Guo Y, et al. Long-Term Administration of Triterpenoids From Ganoderma lucidum Mitigates Age-Associated Brain Physiological Decline via Regulating Sphingolipid Metabolism and Enhancing Autophagy in Mice[J]. Front Aging Neurosci, 2021, 13:628860. doi: 10.3389/fnagi.2021.628860.
doi: 10.3389/fnagi.2021.628860 |
[12] |
Wu B, Chen Y, Clarke R, et al. AMPK Signaling Regulates Mitophagy and Mitochondrial ATP Production in Human Trophoblast Cell Line BeWo[J]. Front Biosci(Landmark Ed), 2022, 27(4):118. doi: 10.31083/j.fbl2704118.
doi: 10.31083/j.fbl2704118 |
[13] |
Yildirim RM, Ergun Y, Basar M. Mitochondrial Dysfunction, Mitophagy and Their Correlation with Perinatal Complications: Preeclampsia and Low Birth Weight[J]. Biomedicines, 2022, 10(10):2539. doi: 10.3390/biomedicines10102539.
doi: 10.3390/biomedicines10102539 |
[14] |
Dagar N, Kale A, Steiger S, et al. Receptor-mediated mitophagy: An emerging therapeutic target in acute kidney injury[J]. Mitochondrion, 2022, 66:82-91. doi: 10.1016/j.mito.2022.08.004.
doi: 10.1016/j.mito.2022.08.004 pmid: 35985440 |
[15] |
Kelley N, Jeltema D, Duan Y, et al. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation[J]. Int J Mol Sci, 2019, 20(13):3328. doi: 10.3390/ijms20133328.
doi: 10.3390/ijms20133328 |
[16] |
Gauster M, Maninger S, Siwetz M, et al. Downregulation of p53 drives autophagy during human trophoblast differentiation[J]. Cell Mol Life Sci, 2018, 75(10):1839-1855. doi: 10.1007/s00018-017-2695-6.
doi: 10.1007/s00018-017-2695-6 pmid: 29080089 |
[17] |
Nakashima A, Yamanaka-Tatematsu M, Fujita N, et al. Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia[J]. Autophagy, 2013, 9(3):303-316. doi: 10.4161/auto.22927.
doi: 10.4161/auto.22927 pmid: 23321791 |
[18] |
Gao L, Qi HB, Kamana KC, et al. Excessive autophagy induces the failure of trophoblast invasion and vasculature: possible relevance to the pathogenesis of preeclampsia[J]. J Hypertens, 2015, 33(1):106-117. doi: 10.1097/HJH.0000000000000366.
doi: 10.1097/HJH.0000000000000366 pmid: 25318653 |
[19] |
Yang L, Liu C, Zhang C, et al. LncRNA small nucleolar RNA host gene 5 inhibits trophoblast autophagy in preeclampsia by targeting microRNA-31-5p and promoting the transcription of secreted protein acidic and rich in cysteine[J]. Bioengineered, 2022, 13(3):7221-7237. doi: 10.1080/21655979.2022.2040873.
doi: 10.1080/21655979.2022.2040873 pmid: 35259061 |
[20] |
Zhao H, Gong L, Wu S, et al. The Inhibition of Protein Kinase C RNA host gene 5 inhibits trophoblast autophagy in preeclampting Autophagy[J]. EBioMedicine, 2020, 56:102813. doi: 10.1016/j.ebiom.2020.102813.
doi: 10.1016/j.ebiom.2020.102813 |
[21] |
Chen G, Lin Y, Chen L, et al. Role of DRAM1 in mitophagy contributes to preeclampsia regulation in mice[J]. Mol Med Rep, 2020, 22(3):1847-1858. doi: 10.3892/mmr.2020.11269.
doi: 10.3892/mmr.2020.11269 pmid: 32582984 |
[22] |
Chen G, Chen L, Huang Y, et al. Increased FUN14 domain containing 1 (FUNDC1) ubiquitination level inhibits mitophagy and alleviates the injury in hypoxia-induced trophoblast cells[J]. Bioengineered, 2022, 13(2):3620-3633. doi: 10.1080/21655979.2021.1997132.
doi: 10.1080/21655979.2021.1997132 |
[23] |
Zhou X, Zhao X, Zhou W, et al. Impaired placental mitophagy and oxidative stress are associated with dysregulated BNIP3 in preeclampsia[J]. Sci Rep, 2021, 11(1):20469. doi: 10.1038/s41598-021-99837-1.
doi: 10.1038/s41598-021-99837-1 pmid: 34650122 |
[24] |
Vangrieken P, Al-Nasiry S, Bast A, et al. Placental Mitochondrial Abnormalities in Preeclampsia[J]. Reprod Sci, 2021, 28(8):2186-2199. doi: 10.1007/s43032-021-00464-y.
doi: 10.1007/s43032-021-00464-y pmid: 33523425 |
[25] | Zhang QX, Na Q, Song W. Altered expression of mTOR and autophagy in term normal human placentas[J]. Rom J Morphol Embryol, 2017, 58(2):517-526. |
[26] |
Hung TH, Hsieh TT, Wu CP, et al. Mammalian target of rapamycin signaling is a mechanistic link between increased endoplasmic reticulum stress and autophagy in the placentas of pregnancies complicated by growth restriction[J]. Placenta, 2017, 60:9-20. doi: 10.1016/j.placenta.2017.10.001.
doi: 10.1016/j.placenta.2017.10.001 |
[27] |
Cao B, Sheth MN, Mysorekar IU. To Zika and destroy: an antimalarial drug protects fetuses from Zika infection[J]. Future Microbiol, 2018, 13:137-139. doi: 10.2217/fmb-2017-0213.
doi: 10.2217/fmb-2017-0213 pmid: 29302996 |
[28] |
Shao X, Cao G, Chen D, et al. Placental trophoblast syncytialization potentiates macropinocytosis via mTOR signaling to adapt to reduced amino acid supply[J]. Proc Natl Acad Sci U S A, 2021, 118(3):e2017092118. doi: 10.1073/pnas.2017092118.
doi: 10.1073/pnas.2017092118 |
[29] |
Dai Y, Li TH, He X, et al. The Effect and Mechanism of Asymmetric Dimethylarginine Regulating Trophoblastic Autophagy on Fetal Growth Restriction[J]. Reprod Sci, 2021, 28(7):2012-2022. doi: 10.1007/s43032-020-00442-w.
doi: 10.1007/s43032-020-00442-w pmid: 33428125 |
[30] |
Xu YY, Liu Y, Cui L, et al. Hypoxic effects on the mitochondrial content and functions of the placenta in fetal growth restriction[J]. Placenta, 2021, 114:100-107. doi: 10.1016/j.placenta.2021.09.003.
doi: 10.1016/j.placenta.2021.09.003 |
[31] |
Bartho LA, O′Callaghan JL, Fisher JJ, et al. Analysis of mitochondrial regulatory transcripts in publicly available datasets with validation in placentae from pre-term, post-term and fetal growth restriction pregnancies[J]. Placenta, 2021, 112:162-171. doi: 10.1016/j.placenta.2021.07.303.
doi: 10.1016/j.placenta.2021.07.303 pmid: 34364121 |
[32] |
Zhao X, Jiang Y, Jiang T, et al. Physiological and pathological regulation of autophagy in pregnancy[J]. Arch Gynecol Obstet, 2020, 302(2):293-303. doi: 10.1007/s00404-020-05607-1.
doi: 10.1007/s00404-020-05607-1 pmid: 32556514 |
[33] |
Agrawal V, Jaiswal MK, Mallers T, et al. Altered autophagic flux enhances inflammatory responses during inflammation-induced preterm labor[J]. Sci Rep, 2015, 5:9410. doi: 10.1038/srep09410.
doi: 10.1038/srep09410 pmid: 25797357 |
[34] |
Liassides C, Papadopoulos A, Siristatidis C, et al. Single nucleotide polymorphisms of Toll-like receptor-4 and of autophagy-related gene 16 like-1 gene for predisposition of premature delivery: A prospective study[J]. Medicine(Baltimore), 2019, 98(40):e17313. doi: 10.1097/MD.0000000000017313.
doi: 10.1097/MD.0000000000017313 |
[35] |
Avagliano L, Massa V, Zullino S, et al. Inflammation modulates LC3 expression in human preterm delivery[J]. J Matern Fetal Neonatal Med, 2017, 30(6):698-704. doi: 10.1080/14767058.2016.1183630.
doi: 10.1080/14767058.2016.1183630 pmid: 27125211 |
[36] |
Akram KM, Frost LI, Anumba DO. Impaired autophagy with augmented apoptosis in a Th1/Th2-imbalanced placental micromilieu is associated with spontaneous preterm birth[J]. Front Mol Biosci, 2022, 9:897228. doi: 10.3389/fmolb.2022.897228.
doi: 10.3389/fmolb.2022.897228 |
[37] |
Manna S, McCarthy C, McCarthy FP. Placental Ageing in Adverse Pregnancy Outcomes: Telomere Shortening, Cell Senescence, and Mitochondrial Dysfunction[J]. Oxid Med Cell Longev, 2019, 2019:3095383. doi: 10.1155/2019/3095383.
doi: 10.1155/2019/3095383 |
[38] |
Bartho LA, Fisher JJ, Cuffe J, et al. Mitochondrial transformations in the aging human placenta[J]. Am J Physiol Endocrinol Metab, 2020, 319(6):E981-E994. doi: 10.1152/ajpendo.00354.2020.
doi: 10.1152/ajpendo.00354.2020 |
[39] |
Zhang X, Evans TD, Jeong SJ, et al. Classical and alternative roles for autophagy in lipid metabolism[J]. Curr Opin Lipidol, 2018, 29(3):203-211. doi: 10.1097/MOL.0000000000000509.
doi: 10.1097/MOL.0000000000000509 pmid: 29601311 |
[1] | 马玲, 李亚西, 赵敏, 王静, 李红丽. 细胞凋亡与不良妊娠结局关系的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 121-126. |
[2] | 侯春艳, 杜秀萍, 王红红, 侯岳洋. 高迁移率族蛋白A2在胎儿生长受限发病机制中的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 127-131. |
[3] | 杨洋, 马媛, 陈宥艺, 赵静, 马文娟. 重度子痫前期患者血清外泌体对人正常蜕膜免疫细胞功能的影响[J]. 国际妇产科学杂志, 2025, 52(2): 143-152. |
[4] | 袁海宁, 牟珍妮, 张江琳, 李恒兵, 张云洁, 孙振高. 高龄卵母细胞质量与端粒酶的关联及机制[J]. 国际妇产科学杂志, 2025, 52(1): 57-60. |
[5] | 王晶, 王永红. 蜕膜自然杀伤细胞在子痫前期发病机制中的研究进展[J]. 国际妇产科学杂志, 2025, 52(1): 88-93. |
[6] | 张雯, 刘慧强. SOCS1与外泌体微小RNA在子痫前期发病机制中的作用[J]. 国际妇产科学杂志, 2025, 52(1): 94-98. |
[7] | 王一丹, 王永红. 转化生长因子-β超家族在子痫前期发病机制中的作用[J]. 国际妇产科学杂志, 2025, 52(1): 99-104. |
[8] | 樊博扬, 胡丽燕. 双胎妊娠合并子痫前期发病机制及预测方法研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 611-615. |
[9] | 何珊, 何文, 侯涛. 经阴道自然腔道内镜手术与传统腹腔镜行大子宫切除术的回顾性队列研究[J]. 国际妇产科学杂志, 2024, 51(6): 712-716. |
[10] | 邓玲玲, 伍绍文, 张为远. 小剂量阿司匹林在子痫前期预防中的研究进展[J]. 国际妇产科学杂志, 2024, 51(5): 515-518. |
[11] | 张琦, 王新, 任毅, 刘超, 高慧婕. SLRPs在胎盘发育及妊娠相关疾病中的研究进展[J]. 国际妇产科学杂志, 2024, 51(5): 525-530. |
[12] | 张铭, 王涵婷, 曹媛媛, 陈鲁杰, 王娟. 妊娠早期肺栓塞一例[J]. 国际妇产科学杂志, 2024, 51(5): 556-559. |
[13] | 丁义玲, 鲁娣, 宋殿荣. 多倍体肿瘤巨细胞对肿瘤耐药作用机制的研究进展[J]. 国际妇产科学杂志, 2024, 51(4): 361-365. |
[14] | 任毅, 胡玉莲, 王新, 张琦, 刘超, 高慧婕. 子痫前期的中药临床应用与现代药理学进展[J]. 国际妇产科学杂志, 2024, 51(4): 442-447. |
[15] | 赵丽霞, 王小青. 硫酸镁在子痫前期治疗中的争议及其不良反应[J]. 国际妇产科学杂志, 2024, 51(4): 448-452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||