国际妇产科学杂志 ›› 2023, Vol. 50 ›› Issue (3): 322-326.doi: 10.12280/gjfckx.20221051
收稿日期:
2022-12-11
出版日期:
2023-06-15
发布日期:
2023-06-27
通讯作者:
单莉,E-mail: 基金资助:
XIA Li-na, SHAN Li(), ZHAO Huan, CHU Guang-hua, WANG Yan-xia
Received:
2022-12-11
Published:
2023-06-15
Online:
2023-06-27
Contact:
SHAN Li, E-mail: 摘要:
代谢组学是通过全面、定量检测生物系统中内源性的小分子化合物,来了解生物体内某一时刻所有内源性代谢物的变化,筛选出显著性生物标志物,为疾病的早期预测、诊断及探索发病机制提供新思路。稽留流产是一种常见的妇科疾病,其发病机制尚未完全阐明。目前,已有代谢组学技术应用于稽留流产的研究,发现可能与稽留流产相关的生物标志物,涉及三羧酸循环、氧化应激及信号转导等多种通路,取得了进展性突破。综述代谢组学技术及其在稽留流产研究中的应用,并进一步探讨血清中的差异代谢物和相关代谢通路的改变对稽留流产的影响。
夏丽娜, 单莉, 赵欢, 楚光华, 王燕霞. 代谢组学技术在稽留流产研究中的应用[J]. 国际妇产科学杂志, 2023, 50(3): 322-326.
XIA Li-na, SHAN Li, ZHAO Huan, CHU Guang-hua, WANG Yan-xia. Application of Metabonomics in the Study of Missed Abortion[J]. Journal of International Obstetrics and Gynecology, 2023, 50(3): 322-326.
[1] | 刘玉峰, 范笑荧, 杨宏天, 等. 代谢组学在疾病诊断方面的研究进展[J]. 辽宁大学学报(自然科学版), 2020, 47(2):149-155. |
[2] |
Liu X, Wang X, Sun H, et al. Urinary metabolic variation analysis during pregnancy and application in Gestational Diabetes Mellitus and spontaneous abortion biomarker discovery[J]. Sci Rep, 2019, 9(1):2605. doi: 10.1038/s41598-019-39259-2.
doi: 10.1038/s41598-019-39259-2 pmid: 30796299 |
[3] |
Youssef L, Crovetto F, Simoes RV, et al. The Interplay between Pathophysiological Pathways in Early-Onset Severe Preeclampsia Unveiled by Metabolomics[J]. Life(Basel), 2022, 12(1):86. doi: 10.3390/life12010086.
doi: 10.3390/life12010086 |
[4] |
Huang Y, Tu M, Qian Y, et al. Age-Dependent Metabolomic Profile of the Follicular Fluids From Women Undergoing Assisted Reproductive Technology Treatment[J]. Front Endocrinol(Lausanne), 2022, 13:818888. doi: 10.3389/fendo.2022.818888.
doi: 10.3389/fendo.2022.818888 |
[5] |
于阳洋, 孙振高. 卵泡液代谢组学与相关疾病的研究进展[J]. 医学综述, 2019, 25(19):3778-3781,3787. doi: 10.3969/j.issn.1006-2084.2019.19.007.
doi: 10.3969/j.issn.1006-2084.2019.19.007 |
[6] |
Diaz SO, Barros AS, Goodfellow BJ, et al. Second trimester maternal urine for the diagnosis of trisomy 21 and prediction of poor pregnancy outcomes[J]. J Proteome Res, 2013, 12(6):2946-2957. doi: 10.1021/pr4002355.
doi: 10.1021/pr4002355 pmid: 23611123 |
[7] |
Turkoglu O, Citil A, Katar C, et al. Metabolomic identification of novel diagnostic biomarkers in ectopic pregnancy[J]. Metabolomics, 2019, 15(11):143. doi: 10.1007/s11306-019-1607-1.
doi: 10.1007/s11306-019-1607-1 pmid: 31630278 |
[8] |
吕若婵, 张林爱. 稽留流产病因学的相关研究进展[J]. 中国计划生育和妇产科, 2022, 14(10):10-13. doi: 10.3969/j.issn.1674-4020.2022.10.03.
doi: 10.3969/j.issn.1674-4020.2022.10.03 |
[9] |
Deng L, Chen HF, Su JY, et al. Analysis results of 169 cases of chorionic villus samples of missed abortion using high throughput sequencing[J]. Eur Rev Med Pharmacol Sci, 2022, 26(15):5496-5502. doi: 10.26355/eurrev_202208_29419.
doi: 10.26355/eurrev_202208_29419 |
[10] |
Luo M, Xiao H, Wang L, et al. The expression and clinical significance of three lncRNAs in patients with a missed abortion[J]. Exp Ther Med, 2021, 21(1):8. doi: 10.3892/etm.2020.9440.
doi: 10.3892/etm.2020.9440 pmid: 33235617 |
[11] |
Wu Z, Jin L, Zheng W, et al. NMR-based serum metabolomics study reveals a innovative diagnostic model for missed abortion[J]. Biochem Biophys Res Commun, 2018, 496(2):679-685. doi: 10.1016/j.bbrc.2018.01.096.
doi: 10.1016/j.bbrc.2018.01.096 |
[12] |
Zaid A, Khan MS, Yan D, et al. Comprehensive two-dimensional gas chromatography with mass spectrometry: an advanced bioanalytical technique for clinical metabolomics studies[J]. Analyst, 2022, 147(18):3974-3992. doi: 10.1039/d2an00584k.
doi: 10.1039/d2an00584k pmid: 35959641 |
[13] |
Liu X, Locasale JW. Metabolomics: A Primer[J]. Trends Biochem Sci, 2017, 42(4):274-284. doi: 10.1016/j.tibs.2017.01.004.
doi: S0968-0004(17)30018-X pmid: 28196646 |
[14] |
Moco S, Buescher JM. Metabolomics: Going Deeper, Going Broader, Going Further[J]. Methods Mol Biol, 2023, 2554:155-178. doi: 10.1007/978-1-0716-2624-5_11.
doi: 10.1007/978-1-0716-2624-5_11 pmid: 36178626 |
[15] |
杭栋, 沈洪兵. 代谢组流行病学研究进展[J]. 中华流行病学杂志, 2021, 42(7):1148-1153. doi: 10.3760/cma.j.cn112338-20210413-00310.
doi: 10.3760/cma.j.cn112338-20210413-00310 |
[16] |
Roca M, Alcoriza MI, Garcia-Cañaveras JC, et al. Reviewing the metabolome coverage provided by LC-MS: Focus on sample preparation and chromatography-A tutorial[J]. Anal Chim Acta, 2021, 1147:38-55. doi: 10.1016/j.aca.2020.12.025.
doi: 10.1016/j.aca.2020.12.025 pmid: 33485584 |
[17] |
Edison AS, Colonna M, Gouveia GJ, et al. NMR: Unique Strengths That Enhance Modern Metabolomics Research[J]. Anal Chem, 2021, 93(1):478-499. doi: 10.1021/acs.analchem.0c04414.
doi: 10.1021/acs.analchem.0c04414 pmid: 33180470 |
[18] |
Letertre M, Dervilly G, Giraudeau P. Combined Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry Approaches for Metabolomics[J]. Anal Chem, 2021, 93(1):500-518. doi: 10.1021/acs.analchem.0c04371.
doi: 10.1021/acs.analchem.0c04371 pmid: 33155816 |
[19] |
Nagana Gowda GA, Raftery D. NMR-Based Metabolomics[J]. Adv Exp Med Biol, 2021, 1280:19-37. doi: 10.1007/978-3-030-51652-9_2.
doi: 10.1007/978-3-030-51652-9_2 pmid: 33791972 |
[20] |
Crook AA, Powers R. Quantitative NMR-Based Biomedical Metabolomics: Current Status and Applications[J]. Molecules, 2020, 25(21):5128. doi: 10.3390/molecules25215128.
doi: 10.3390/molecules25215128 |
[21] |
Zeki ÖC, Eylem CC, Reçber T, et al. Integration of GC-MS and LC-MS for untargeted metabolomics profiling[J]. J Pharm Biomed Anal, 2020, 190:113509. doi: 10.1016/j.jpba.2020.113509.
doi: 10.1016/j.jpba.2020.113509 |
[22] |
付金, 胡建安. 代谢组学在环境污染物的毒作用及其机制研究中的进展[J]. 中南大学学报(医学版), 2019, 44(6):692-700. doi: 10.11817/j.issn.1672-7347.2019.06.013.
doi: 10.11817/j.issn.1672-7347.2019.06.013 |
[23] |
Grögera TM, Käferab U, Zimmermannab R. Gas chromatography in combination with fast high-resolution time-of-flight mass spectrometry: Technical overview and perspectives for data visualization[J]. Trends Anal Chem, 2020, 122:115677. doi:10.1016/j.trac.2019.115677.
doi: 10.1016/j.trac.2019.115677 |
[24] |
Yang Z, Ren ZY, Cheng YJ, et al. Review and prospect on portable mass spectrometer for recent applications[J]. Vacuum, 2022, 199:110889. doi:10.1016/J.VACUUM.2022.110889.
doi: 10.1016/J.VACUUM.2022.110889 |
[25] |
徐晓雅, 陈鑫, 邓惠婷, 等. 液质联用技术的应用与发展[J]. 广州化工, 2020, 48(6):47-49. doi: 10.3969/j.issn.1001-9677.2020.06.019.
doi: 10.3969/j.issn.1001-9677.2020.06.019 |
[26] |
Miao SB, Feng YR, Wang XD, et al. Glutamine as a Potential Noninvasive Biomarker for Human Embryo Selection[J]. Reprod Sci, 2022, 29(6):1721-1729. doi: 10.1007/s43032-021-00812-y.
doi: 10.1007/s43032-021-00812-y |
[27] |
Fu S, Li Z, Xiao L, et al. Glutamine Synthetase Promotes Radiation Resistance via Facilitating Nucleotide Metabolism and Subsequent DNA Damage Repair[J]. Cell Rep, 2019, 28(5):1136-1143.e4. doi: 10.1016/j.celrep.2019.07.002.
doi: S2211-1247(19)30886-1 pmid: 31365859 |
[28] |
Špirková A, Kovaříková V, Šefčíková Z, et al. Glutamate can act as a signaling molecule in mouse preimplantation embryos?[J]. Biol Reprod, 2022, 107(4):916-927. doi: 10.1093/biolre/ioac126.
doi: 10.1093/biolre/ioac126 |
[29] |
Arnold PK, Jackson BT, Paras KI, et al. A non-canonical tricarboxylic acid cycle underlies cellular identity[J]. Nature, 2022, 603(7901):477-481. doi: 10.1038/s41586-022-04475-w.
doi: 10.1038/s41586-022-04475-w |
[30] |
Bhattacharjee A, Prajapati SK, Krishnamurthy S. Supplementation of taurine improves ionic homeostasis and mitochondrial function in the rats exhibiting post-traumatic stress disorder-like symptoms[J]. Eur J Pharmacol, 2021, 908:174361. doi: 10.1016/j.ejphar.2021.174361.
doi: 10.1016/j.ejphar.2021.174361 |
[31] |
Fei H, Hou J, Wu Z, et al. Plasma metabolomic profile and potential biomarkers for missed abortion[J]. Biomed Chromatogr, 2016, 30(12):1942-1952. doi: 10.1002/bmc.3770.
doi: 10.1002/bmc.3770 pmid: 27229294 |
[32] |
吕雪明, 王琳, 丁秋莲, 等. 吲哚胺2,3-双加氧酶的研究及应用[J]. 山西化工, 2022, 42(3):153-154. doi: 10.16525/j.cnki.cn14-1109/tq.2022.03.063.
doi: 10.16525/j.cnki.cn14-1109/tq.2022.03.063 |
[33] |
van Zundert S, Griffioen PH, van Rossem L, et al. Simultaneous quantification of tryptophan metabolites by liquid chromatography tandem mass spectrometry during early human pregnancy[J]. Clin Chem Lab Med, 2022, 61(3):442-451. doi: 10.1515/cclm-2022-0790.
doi: 10.1515/cclm-2022-0790 pmid: 36458576 |
[34] |
da Silva Junior CA, Marques DA, Patrone L, et al. Intra-uterine diazepam exposure decreases the number of catecholaminergic and serotoninergic neurons of neonate rats[J]. Neurosci Lett, 2022, 795:137014. doi: 10.1016/j.neulet.2022.137014.
doi: 10.1016/j.neulet.2022.137014 |
[35] |
Wei H, Liu S, Lian R, et al. Abnormal Expression of Indoleamine 2, 3-Dioxygenase in Human Recurrent Miscarriage[J]. Reprod Sci, 2020, 27(8):1656-1664. doi: 10.1007/s43032-020-00196-5.
doi: 10.1007/s43032-020-00196-5 pmid: 32430712 |
[36] |
Qiu Y, Shen J, Jiang W, et al. Sphingosine 1-phosphate and its regulatory role in vascular endothelial cells[J]. Histol Histopathol, 2022, 37(3):213-225. doi: 10.14670/HH-18-428.
doi: 10.14670/HH-18-428 |
[37] |
Ueda N. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury[J]. Int J Mol Sci, 2022, 23(7):4010. doi: 10.3390/ijms23074010.
doi: 10.3390/ijms23074010 |
[38] |
Quinville BM, Deschenes NM, Ryckman AE, et al. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis[J]. Int J Mol Sci, 2021, 22(11):5793. doi: 10.3390/ijms22115793.
doi: 10.3390/ijms22115793 |
[39] |
Fakhr Y, Brindley DN, Hemmings DG. Physiological and pathological functions of sphingolipids in pregnancy[J]. Cell Signal, 2021, 85:110041. doi: 10.1016/j.cellsig.2021.110041.
doi: 10.1016/j.cellsig.2021.110041 |
[40] |
Kagan T, Stoyanova G, Lockshin RA, et al. Ceramide from sphingomyelin hydrolysis induces neuronal differentiation, whereas de novo ceramide synthesis and sphingomyelin hydrolysis initiate apoptosis after NGF withdrawal in PC12 Cells[J]. Cell Commun Signal, 2022, 20(1):15. doi: 10.1186/s12964-021-00767-2.
doi: 10.1186/s12964-021-00767-2 pmid: 35101031 |
[41] |
Guijas C, Montenegro-Burke JR, Warth B, et al. Metabolomics activity screening for identifying metabolites that modulate phenotype[J]. Nat Biotechnol, 2018, 36(4):316-320. doi: 10.1038/nbt.4101.
doi: 10.1038/nbt.4101 pmid: 29621222 |
[1] | 马玲, 李亚西, 赵敏, 王静, 李红丽. 细胞凋亡与不良妊娠结局关系的研究进展[J]. 国际妇产科学杂志, 2025, 52(2): 121-126. |
[2] | 苏海绮, 李雷. 甲基化检测用于卵巢癌筛查和诊断的研究进展[J]. 国际妇产科学杂志, 2024, 51(4): 366-369. |
[3] | 杨丽, 杨静, 叶尔登切切克, 韩锐, 腊晓琳. 基于RNA-seq不明原因复发性流产绒毛组织mRNA基因差异性表达研究[J]. 国际妇产科学杂志, 2024, 51(3): 322-328. |
[4] | 梁婧, 乔林静, 侯海燕. 基于网络药理学探析五味子防治稽留流产的机制及验证[J]. 国际妇产科学杂志, 2024, 51(2): 167-175. |
[5] | 刘源瀛, 张爱青, 王永清. 宫颈Bishop评分联合宫颈超声弹性成像及血清学标志物对宫颈成熟度评估价值的研究[J]. 国际妇产科学杂志, 2024, 51(2): 184-188. |
[6] | 孟斐, 刘慧强. 不同来源外泌体在子痫前期发病和治疗中的作用[J]. 国际妇产科学杂志, 2024, 51(1): 10-14. |
[7] | 计恩婷, 许雅绚, 张春仁, 胡敏, 马红霞. 胎盘线粒体功能在妊娠并发症发生机制中作用的研究[J]. 国际妇产科学杂志, 2023, 50(5): 497-501. |
[8] | 蔺凯丽, 郭洁, 张崴, 宋殿荣, 张继雯, 怀其娟, 赵琳. 复发性流产患者宫腔微环境对早期妊娠的影响[J]. 国际妇产科学杂志, 2023, 50(5): 502-506. |
[9] | 王强玉, 张海彦, 谢安妮, 李新华. 醒脑开窍针刺法治疗产后抑郁的临床疗效[J]. 国际妇产科学杂志, 2023, 50(5): 555-558. |
[10] | 刘冰冰, 徐燕宁, 陈凌. 炎症细胞因子与胚胎停育的关系[J]. 国际妇产科学杂志, 2023, 50(4): 409-415. |
[11] | 闫静, 李晓雨, 张晶. 妊娠早期心理压力与自然流产的关系研究[J]. 国际妇产科学杂志, 2023, 50(3): 349-353. |
[12] | 吴亚梅, 李濛, 李佳雯, 应豪, 黄璐. 自噬在胎儿生长发育及妊娠并发症中的作用[J]. 国际妇产科学杂志, 2023, 50(2): 121-126. |
[13] | 王瑞琪, 邓志敏, 代芳芳, 程艳香. 复发性流产患者淋巴细胞免疫治疗的研究进展[J]. 国际妇产科学杂志, 2023, 50(2): 138-141,160. |
[14] | 何田玉, 王芳. 基因多态性与复发性流产[J]. 国际妇产科学杂志, 2023, 50(1): 82-87. |
[15] | 冯丹, 申复进. 宫颈癌新辅助化疗的疗效评估[J]. 国际妇产科学杂志, 2022, 49(5): 529-534. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||