[1] |
Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis[J]. Lancet Glob Health, 2020,8(2):e191-e203. doi: 10.1016/S2214-109X(19)30482-6.
doi: 10.1016/S2214-109X(19)30482-6
|
[2] |
Cohen PA, Jhingran A, Oaknin A, et al. Cervical cancer[J]. Lancet, 2019,393(10167):169-182. doi: 10.1016/S0140-6736(18)32470-X.
doi: S0140-6736(18)32470-X
pmid: 30638582
|
[3] |
Lu TX, Rothenberg ME. MicroRNA[J]. J Allergy Clin Immunol, 2018,141(4):1202-1207. doi: 10.1016/j.jaci.2017.08.034.
doi: 10.1016/j.jaci.2017.08.034
|
[4] |
Asiaf A, Ahmad ST, Arjumand W, et al. MicroRNAs in Breast Cancer: Diagnostic and Therapeutic Potential[J]. Methods Mol Biol, 2018,1699:23-43. doi: 10.1007/978-1-4939-7435-1_2.
doi: 10.1007/978-1-4939-7435-1_2
|
[5] |
Yin Y, Cai J, Meng F, et al. MiR-144 suppresses proliferation, invasion, and migration of breast cancer cells through inhibiting CEP55[J]. Cancer Biol Ther, 2018,19(4):306-315. doi: 10.1080/15384047.2017.1416934.
doi: 10.1080/15384047.2017.1416934
|
[6] |
Tian QG, Tian RC, Liu Y, et al. The role of miR-144/GSPT1 axis in gastric cancer[J]. Eur Rev Med Pharmacol Sci, 2018,22(13):4138-4145. doi: 10.26355/eurrev_201807_15406.
doi: 15406
pmid: 30024602
|
[7] |
Sheng S, Xie L, Wu Y, et al. MiR-144 inhibits growth and metastasis in colon cancer by down-regulating SMAD4[J]. Biosci Rep, 2019, 39(3):BSR20181895. doi: 10.1042/BSR20181895.
doi: 10.1042/BSR20181895
|
[8] |
Uchida A, Seki N, Mizuno K, et al. Involvement of dual-strand of the miR-144 duplex and their targets in the pathogenesis of lung squamous cell carcinoma[J]. Cancer Sci, 2019,110(1):420-432. doi: 10.1111/cas.13853.
doi: 10.1111/cas.13853
|
[9] |
Kooshkaki O, Rezaei Z, Rahmati M, et al. MiR-144: A New Possible Therapeutic Target and Diagnostic/Prognostic Tool in Cancers[J]. Int J Mol Sci, 2020,21(7):2578. doi: 10.3390/ijms21072578.
doi: 10.3390/ijms21072578
|
[10] |
Akiyoshi S, Fukagawa T, Ueo H, et al. Clinical significance of miR-144-ZFX axis in disseminated tumour cells in bone marrow in gastric cancer cases[J]. Br J Cancer, 2012,107(8):1345-1353. doi: 10.1038/bjc.2012.326.
doi: 10.1038/bjc.2012.326
|
[11] |
Li J, Sun P, Yue Z, et al. miR-144-3p Induces Cell Cycle Arrest and Apoptosis in Pancreatic Cancer Cells by Targeting Proline-Rich Protein 11 Expression via the Mitogen-Activated Protein Kinase Signaling Pathway[J]. DNA Cell Biol, 2017,36(8):619-626. doi: 10.1089/dna.2017.3656.
doi: 10.1089/dna.2017.3656
|
[12] |
Folkman J. Tumor angiogenesis: therapeutic implications[J]. N Engl J Med, 1971,285(21):1182-1186. doi: 10.1056/NEJM197111182852108.
doi: 10.1056/NEJM197111182852108
|
[13] |
Matsumoto K, Ema M. Roles of VEGF-A signalling in development, regeneration, and tumours[J]. J Biochem, 2014,156(1):1-10. doi: 10.1093/jb/mvu031.
doi: 10.1093/jb/mvu031
|
[14] |
Blanco R, Gerhardt H. VEGF and Notch in tip and stalk cell selection[J]. Cold Spring Harb Perspect Med, 2013,3(1):a006569. doi: 10.1101/cshperspect.a006569.
doi: 10.1101/cshperspect.a006569
|
[15] |
Wu M, Huang C, Huang X, et al. MicroRNA-144-3p suppresses tumor growth and angiogenesis by targeting SGK3 in hepatocellular carcinoma[J]. Oncol Rep, 2017,38(4):2173-2181. doi: 10.3892/or.2017.5900.
doi: 10.3892/or.2017.5900
|
[16] |
Tao P, Wen H, Yang B, et al. miR-144 inhibits growth and metastasis of cervical cancer cells by targeting VEGFA and VEGFC[J]. Exp Ther Med, 2018,15(1):562-568. doi: 10.3892/etm.2017. 5392.
doi: 10.3892/etm.2017. 5392
|
[17] |
Wu J, Zhao Y, Li F, et al. MiR-144-3p: a novel tumor suppressor targeting MAPK6 in cervical cancer[J]. J Physiol Biochem, 2019,75(2):143-152. doi: 10.1007/s13105-019-00681-9.
doi: 10.1007/s13105-019-00681-9
|
[18] |
Benedetti Panici P, Basile S, Angioli R. Pelvic and aortic lymphadenectomy in cervical cancer: the standardization of surgical procedure and its clinical impact[J]. Gynecol Oncol, 2009,113(2):284-290. doi: 10.1016/j.ygyno.2008.12.014.
doi: 10.1016/j.ygyno.2008.12.014
|
[19] |
Ding H, Wu YL, Wang YX, et al. Characterization of the microRNA expression profile of cervical squamous cell carcinoma metastases[J]. Asian Pac J Cancer Prev, 2014,15(4):1675-1679. doi: 10.7314/apjcp.2014.15.4.1675.
doi: 10.7314/apjcp.2014.15.4.1675
|
[20] |
Moon H, Ju HL, Chung SI, et al. Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail[J]. Gastroenterology, 2017, 153(5):1378-1391.e6. doi: 10.1053/j.gastro.2017.07.014.
doi: 10.1053/j.gastro.2017.07.014
|
[21] |
Liang F, Ren C, Wang J, et al. The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy[J]. Oncogenesis, 2019,8(10):59. doi: 10.1038/s41389-019-0165-8.
doi: 10.1038/s41389-019-0165-8
pmid: 31597912
|
[22] |
Savagner P, Yamada KM, Thiery JP. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition[J]. J Cell Biol, 1997,137(6):1403-1419. doi: 10.1083/jcb.137.6.1403.
doi: 10.1083/jcb.137.6.1403
pmid: 9182671
|
[23] |
陈昌贤, 谢雨萱, 莫凌昭, 等. 宫颈癌RNA分子的研究进展[J]. 国际妇产科学杂志, 2018,45(6):634-637. doi: 10.3969/j.issn.1674-1870.2018.06.006.
doi: 10.3969/j.issn.1674-1870.2018.06.006
|
[24] |
Zhu Y, Wu Y, Yang L, et al. Long non-coding RNA activated by transforming growth factor-β promotes proliferation and invasion of cervical cancer cells by regulating the miR-144/ITGA6 axis[J]. Exp Physiol, 2019,104(6):837-844. doi: 10.1113/EP087656.
doi: 10.1113/EP087656
|
[25] |
Zhang C, Liao Y, Liu P, et al. FABP5 promotes lymph node metastasis in cervical cancer by reprogramming fatty acid metabolism[J]. Theranostics, 2020,10(15):6561-6580. doi: 10.7150/thno.44868.
doi: 10.7150/thno.44868
|
[26] |
Shi C, Yang Y, Zhang L, et al. Optimal subset of signature miRNAs consisting of 7 miRNAs that can serve as a novel diagnostic and prognostic predictor for the progression of cervical cancer[J]. Oncol Rep, 2019,41(6):3167-3178. doi: 10.3892/or.2019.7097.
doi: 10.3892/or.2019.7097
|
[27] |
Yang C, Ren J, Li B, et al. Identification of clinical tumor stages related mRNAs and miRNAs in cervical squamous cell carcinoma[J]. Pathol Res Pract, 2018,214(10):1638-1647. doi: 10.1016/j.prp.2018.07.035.
doi: 10.1016/j.prp.2018.07.035
|
[28] |
Pulati N, Zhang Z, Gulimilamu A, et al. HPV16(+) -miRNAs in cervical cancer and the anti-tumor role played by miR-5701[J]. J Gene Med, 2019,21(11):e3126. doi: 10.1002/jgm.3126.
doi: 10.1002/jgm.3126
|
[29] |
Abba ML, Patil N, Leupold JH, et al. MicroRNAs as novel targets and tools in cancer therapy[J]. Cancer Lett, 2017,387:84-94. doi: 10.1016/j.canlet.2016.03.043.
doi: 10.1016/j.canlet.2016.03.043
|
[30] |
Shi F, Su J, Liu Z, et al. miR-144 reverses cisplatin resistance in cervical cancer via targeting LHX2[J]. J Cell Biochem, 2019,120(9):15018-15026. doi: 10.1002/jcb.28763.
doi: 10.1002/jcb.28763
|
[31] |
Thiery JP. Epithelial-mesenchymal transitions in tumour progression[J]. Nat Rev Cancer, 2002,2(6):442-454. doi: 10.1038/nrc822.
doi: 10.1038/nrc822
pmid: 12189386
|
[32] |
Bai M, Che Y, Lu K, et al. Analysis of deubiquitinase OTUD5 as a biomarker and therapeutic target for cervical cancer by bioinformatic analysis[J]. Peer J, 2020,8:e9146. doi: 10.7717/peerj.9146.
doi: 10.7717/peerj.9146
|