[1] |
Salama NM, Zaghlol SS, Mohamed HH, et al. Suppression of the inflammation and fibrosis in Asherman syndrome rat model by mesenchymal stem cells: histological and immunohistochemical studies[J]. Folia Histochem Cytobiol, 2020, 58(3):208-218. doi: 10.5603/FHC.a2020.0024.
doi: 10.5603/FHC.a2020.0024
|
[2] |
Movilla P, Wang J, Chen T, et al. Endometrial thickness measurements among Asherman syndrome patients prior to embryo transfer[J]. Hum Reprod, 2020, 35(12):2746-2754. doi: 10.1093/humrep/deaa273.
doi: 10.1093/humrep/deaa273
|
[3] |
Zhao X, Liu Y, Zhang A, et al. Logistic regression analyses of factors affecting fertility of intrauterine adhesions patients[J]. Ann Transl Med, 2020, 8(4):49. doi: 10.21037/atm.2019.11.115.
doi: 10.21037/atm.2019.11.115
|
[4] |
蒋文军, 黄晓武. 宫腔粘连分离术后预防粘连复发的方法及研究进展[J]. 国际妇产科学杂志, 2021, 48(4):409-414. doi: 10.12280/gjfckx.20201136.
doi: 10.12280/gjfckx.20201136
|
[5] |
Huang XW, Lin MM, Zhao HQ, et al. A prospective randomized controlled trial comparing two different treatments of intrauterine adhesions[J]. Reprod Biomed Online, 2020, 40(6):835-841. doi: 10.1016/j.rbmo.2020.02.013.
doi: 10.1016/j.rbmo.2020.02.013
|
[6] |
Yang X, Liu Y, Li TC, et al. Durations of intrauterine balloon therapy and adhesion reformation after hysteroscopic adhesiolysis: a randomized controlled trial[J]. Reprod Biomed Online, 2020, 40(4):539-546. doi: 10.1016/j.rbmo.2019.11.017.
doi: S1472-6483(19)30847-8
pmid: 32199799
|
[7] |
Bosteels J, Weyers S, D′Hooghe TM, et al. Anti-adhesion therapy following operative hysteroscopy for treatment of female subfertility[J]. Cochrane Database Syst Rev, 2017, 11(11):CD011110. doi: 10.1002/14651858.CD011110.pub3.
doi: 10.1002/14651858.CD011110.pub3
|
[8] |
Li C, Cai A, Sun C, et al. The study on the safety and efficacy of amnion graft for preventing the recurrence of moderate to severe intrauterine adhesions[J]. Genes Dis, 2020, 7(2):266-271. doi: 10.1016/j.gendis.2019.03.003.
doi: 10.1016/j.gendis.2019.03.003
|
[9] |
Chen X, Zhou Y, Sun Y, et al. Transplantation of decellularized and lyophilized amniotic membrane inhibits endometrial fibrosis by regulating connective tissue growth factor and tissue inhibitor of matrix metalloproteinase-2[J]. Exp Ther Med, 2021, 22(3):968. doi: 10.3892/etm.2021.10400.
doi: 10.3892/etm.2021.10400
|
[10] |
Cai H, Qiao L, Song K, et al. Oxidized, Regenerated Cellulose Adhesion Barrier Plus Intrauterine Device Prevents Recurrence After Adhesiolysis for Moderate to Severe Intrauterine Adhesions[J]. J Minim Invasive Gynecol, 2017, 24(1):80-88. doi: 10.1016/j.jmig.2016.09.021.
doi: 10.1016/j.jmig.2016.09.021
|
[11] |
Trinh TT, Nguyen KD, Pham HV, et al. Effectiveness of Hyaluronic Acid Gel and Intrauterine Devices in Prevention of Intrauterine Adhesions after Hysteroscopic Adhesiolysis in Infertile Women[J]. J Minim Invasive Gynecol, 2022, 29(2):284-290. doi: 10.1016/j.jmig.2021.08.010.
doi: 10.1016/j.jmig.2021.08.010
|
[12] |
Wang L, Yu C, Chang T, et al. In situ repair abilities of human umbilical cord-derived mesenchymal stem cells and autocrosslinked hyaluronic acid gel complex in rhesus monkeys with intrauterine adhesion[J]. Sci Adv, 2020, 6(21):eaba6357. doi: 10.1126/sciadv.aba6357.
doi: 10.1126/sciadv.aba6357
|
[13] |
Can S, Kirpinar G, Dural O, et al. Efficacy of a New Crosslinked Hyaluronan Gel in the Prevention of Intrauterine Adhesions[J]. JSLS, 2018, 22(4):e2018.00036. doi: 10.4293/JSLS.2018.00036.
doi: 10.4293/JSLS.2018.00036
|
[14] |
Pabuçcu EG, Kovanci E, Şahin Ö, et al. New Crosslinked Hyaluronan Gel, Intrauterine Device, or Both for the Prevention of Intrauterine Adhesions[J]. JSLS, 2019, 23(1):e2018.00108. doi: 10.4293/JSLS.2018.00108.
doi: 10.4293/JSLS.2018.00108
|
[15] |
Mao X, Tao Y, Cai R, et al. Cross-linked hyaluronan gel to improve pregnancy rate of women patients with moderate to severe intrauterine adhesion treated with IVF: a randomized controlled trial[J]. Arch Gynecol Obstet, 2020, 301(1):199-205. doi: 10.1007/s00404-019-05368-6.
doi: 10.1007/s00404-019-05368-6
|
[16] |
Benor A, Gay S, DeCherney A. An update on stem cell therapy for Asherman syndrome[J]. J Assist Reprod Genet, 2020, 37(7):1511-1529. doi: 10.1007/s10815-020-01801-x.
doi: 10.1007/s10815-020-01801-x
|
[17] |
Yao Y, Chen R, Wang G, et al. Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium[J]. Stem Cell Res Ther, 2019, 10(1):225. doi: 10.1186/s13287-019-1332-8.
doi: 10.1186/s13287-019-1332-8
|
[18] |
Han X, Ma Y, Lu X, et al. Transplantation of Human Adipose Stem Cells Using Acellular Human Amniotic Membrane Improves Angiogenesis in Injured Endometrial Tissue in a Rat Intrauterine Adhesion Model[J]. Cell Transplant, 2020, 29:963689720952055. doi: 10.1177/0963689720952055.
doi: 10.1177/0963689720952055
|
[19] |
Zhao S, Qi W, Zheng J, et al. Exosomes Derived from Adipose Mesenchymal Stem Cells Restore Functional Endometrium in a Rat Model of Intrauterine Adhesions[J]. Reprod Sci, 2020, 27(6):1266-1275. doi: 10.1007/s43032-019-00112-6.
doi: 10.1007/s43032-019-00112-6
|
[20] |
Zhang L, Li Y, Guan CY, et al. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase[J]. Stem Cell Res Ther, 2018, 9(1):36. doi: 10.1186/s13287-018-0777-5.
doi: 10.1186/s13287-018-0777-5
pmid: 29433563
|
[21] |
Cao Y, Sun H, Zhu H, et al. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phase I clinical trial[J]. Stem Cell Res Ther, 2018, 9(1):192. doi: 10.1186/s13287-018-0904-3.
doi: 10.1186/s13287-018-0904-3
|
[22] |
Liu Y, Cai J, Luo X, et al. Collagen Scaffold with Human Umbilical Cord Mesenchymal Stem Cells Remarkably Improves Intrauterine Adhesions in a Rat Model[J]. Gynecol Obstet Invest, 2020, 85(3):267-276. doi: 10.1159/000505691.
doi: 10.1159/000505691
|
[23] |
汪沙, 郭正晨, 汤一群, 等. 人脐带间充质干细胞促进宫腔粘连大鼠子宫内膜增殖与分化[J]. 国际妇产科学杂志, 2021, 48(3):309-313. doi: 10.12280/gjfckx.20201077.
doi: 10.12280/gjfckx.20201077
|
[24] |
Zheng SX, Wang J, Wang XL, et al. Feasibility analysis of treating severe intrauterine adhesions by transplanting menstrual blood-derived stem cells[J]. Int J Mol Med, 2018, 41(4):2201-2212. doi: 10.3892/ijmm.2018.3415.
doi: 10.3892/ijmm.2018.3415
|
[25] |
Ma H, Liu M, Li Y, et al. Intrauterine transplantation of autologous menstrual blood stem cells increases endometrial thickness and pregnancy potential in patients with refractory intrauterine adhesion[J]. J Obstet Gynaecol Res, 2020, 46(11):2347-2355. doi: 10.1111/jog.14449.
doi: 10.1111/jog.14449
|
[26] |
Chang QY, Zhang SW, Li PP, et al. Safety of menstrual blood-derived stromal cell transplantation in treatment of intrauterine adhesion[J]. World J Stem Cells, 2020, 12(5):368-380. doi: 10.4252/wjsc.v12.i5.368.
doi: 10.4252/wjsc.v12.i5.368
|
[27] |
Huang H, Xu B, Cheng C, et al. A novel intrauterine stent for prevention of intrauterine adhesions[J]. Ann Transl Med, 2020, 8(4):61. doi: 10.21037/atm.2019.12.82.
doi: 10.21037/atm.2019.12.82
pmid: 32175355
|
[28] |
Chiu CS, Hwu YM, Lee RK, et al. Intrauterine adhesion prevention with Malecot catheter after hysteroscopic myomectomy: A novel approach[J]. Taiwan J Obstet Gynecol, 2020, 59(1):56-60. doi: 10.1016/j.tjog.2019.11.008.
doi: 10.1016/j.tjog.2019.11.008
|