国际妇产科学杂志 ›› 2022, Vol. 49 ›› Issue (5): 502-506.doi: 10.12280/gjfckx.20220278
收稿日期:
2022-04-17
出版日期:
2022-10-15
发布日期:
2022-10-24
通讯作者:
平毅
E-mail:pingyi7110@126.com
Received:
2022-04-17
Published:
2022-10-15
Online:
2022-10-24
Contact:
PING Yi
E-mail:pingyi7110@126.com
摘要:
盆底功能障碍性疾病(pelvic floor dysfunctions,PFD)已经成为危害女性健康的公共卫生问题,其发病机制迄今尚未完全明确。由于人体试验受到医学伦理的约束,动物模型成为研究PFD的重要工具。目前PFD的动物模型根据物种的不同大致分为啮齿类动物、小型哺乳动物、大型哺乳动物以及非人类灵长类动物(nonhuman primates)。通过研究动物模型现况发现,4类动物中啮齿类动物模型使用最多,非人类灵长类动物模型最为理想。模拟分娩是最主要的造模方法,基因技术可构建特定性质的动物模型。生物力学测量为盆底损伤病理和治疗效果的评估提供客观数据,可以进一步优化动物模型,为探索PFD发病机制及治疗方法提供更多助力。
王照, 平毅. 盆底功能障碍性疾病动物模型和生物力学测量方法[J]. 国际妇产科学杂志, 2022, 49(5): 502-506.
WANG Zhao, PING Yi. Animal Models of Pelvic Floor Dysfunctions and Biomechanical Measurements[J]. Journal of International Obstetrics and Gynecology, 2022, 49(5): 502-506.
[1] |
Shen L, Yang J, Bai X, et al. Analysis of the current status of pelvic floor dysfunction in urban women in Xi′an City[J]. Ann Palliat Med, 2020, 9(3):979-984. doi: 10.21037/apm-20-784.
doi: 10.21037/apm-20-784 |
[2] |
Brown HW, Hegde A, Huebner M, et al. International urogynecology consultation chapter 1 committee 2: Epidemiology of pelvic organ prolapse: prevalence, incidence, natural history, and service needs[J]. Int Urogynecol J, 2022, 33(2):173-187. doi: 10.1007/s00192-021-05018-z.
doi: 10.1007/s00192-021-05018-z pmid: 34977950 |
[3] |
Abufaraj M, Xu T, Cao C, et al. Prevalence and trends in urinary incontinence among women in the United States, 2005-2018[J]. Am J Obstet Gynecol, 2021, 225(2):166.e1-e12. doi: 10.1016/j.ajog.2021.03.016.
doi: 10.1016/j.ajog.2021.03.016 |
[4] |
Sun ZJ, Wang XQ, Lang JH, et al. A 14-year multi-institutional collaborative study of Chinese pelvic floor surgical procedures related to pelvic organ prolapse[J]. Chin Med J(Engl), 2021, 134(2):200-205. doi: 10.1097/CM9.0000000000001237.
doi: 10.1097/CM9.0000000000001237 |
[5] |
Whooley J, Cunnane EM, Do Amaral R, et al. Stress Urinary Incontinence and Pelvic Organ Prolapse: Biologic Graft Materials Revisited[J]. Tissue Eng Part B Rev, 2020, 26(5):475-483. doi: 10.1089/ten.TEB.2020.0024.
doi: 10.1089/ten.TEB.2020.0024 |
[6] |
Hennes D, Rosamilia A, Werkmeister JA, et al. Endometrial SUSD2+ Mesenchymal Stem/Stromal Cells in Tissue Engineering: Advances in Novel Cellular Constructs for Pelvic Organ Prolapse[J]. J Pers Med, 2021, 11(9):840. doi: 10.3390/jpm11090840.
doi: 10.3390/jpm11090840 |
[7] |
Amend B, Harland N, Knoll J, et al. Large Animal Models for Investigating Cell Therapies of Stress Urinary Incontinence[J]. Int J Mol Sci, 2021, 22(11):6092. doi: 10.3390/ijms22116092.
doi: 10.3390/ijms22116092 |
[8] |
Abramowitch SD, Feola A, Jallah Z, et al. Tissue mechanics, animal models, and pelvic organ prolapse: a review[J]. Eur J Obstet Gynecol Reprod Biol, 2009, 144(Suppl 1):146-158. doi: 10.1016/j.ejogrb.2009.02.022.
doi: 10.1016/j.ejogrb.2009.02.022 |
[9] |
Wu X, Guo H, Jia Y, et al. Adipose mesenchymal stem cell-based tissue engineering mesh with sustained bFGF release to enhance tissue repair[J]. Biomater Sci, 2022, 10(12):3110-3121. doi: 10.1039/d1bm01893k.
doi: 10.1039/d1bm01893k |
[10] |
Mori da Cunha M, Mackova K, Hympanova LH, et al. Animal models for pelvic organ prolapse: systematic review[J]. Int Urogynecol J, 2021, 32(6):1331-1344. doi: 10.1007/s00192-020-04638-1.
doi: 10.1007/s00192-020-04638-1 pmid: 33484287 |
[11] |
Abdulagatov IM, Ragimov RM, Khamidov МА, et al. ALD coated polypropylene hernia meshes for prevention of mesh-related post-surgery complications: an experimental study in animals[J]. Biomed Mater, 2021 Nov 19, 17(1). doi: 10.1088/1748-605X/ac361e.
doi: 10.1088/1748-605X/ac361e |
[12] |
Peró M, Casani L, Castells-Sala C, et al. Rabbit as an animal model for the study of biological grafts in pelvic floor dysfunctions[J]. Sci Rep, 2021, 11(1):10545. doi: 10.1038/s41598-021-89698-z.
doi: 10.1038/s41598-021-89698-z pmid: 34006889 |
[13] |
Jangö H, Gräs S, Christensen L, et al. Examinations of a new long-term degradable electrospun polycaprolactone scaffold in three rat abdominal wall models[J]. J Biomater Appl, 2017, 31(7):1077-1086. doi: 10.1177/0885328216687664.
doi: 10.1177/0885328216687664 pmid: 28077052 |
[14] |
Shen JD, Chen SJ, Chen HY, et al. Review of Animal Models to Study Urinary Bladder Function[J]. Biology(Basel), 2021, 10(12):1316. doi: 10.3390/biology10121316.
doi: 10.3390/biology10121316 |
[15] |
Doumouchtsis SK, Loganathan J, Pergialiotis V. The role of obesity on urinary incontinence and anal incontinence in women: a review[J]. BJOG, 2022, 129(1):162-170. doi: 10.1111/1471-0528.16848.
doi: 10.1111/1471-0528.16848 |
[16] |
Jackson R, Hilson RP, Roe AR, et al. Epidemiology of vaginal prolapse in mixed-age ewes in New Zealand[J]. N Z Vet J, 2014, 62(6):328-337. doi: 10.1080/00480169.2014.925788.
doi: 10.1080/00480169.2014.925788 |
[17] |
Urbankova I, Callewaert G, Blacher S, et al. First delivery and ovariectomy affect biomechanical and structural properties of the vagina in the ovine model[J]. Int Urogynecol J, 2019, 30(3):455-464. doi: 10.1007/s00192-017-3535-9.
doi: 10.1007/s00192-017-3535-9 pmid: 29313089 |
[18] |
Stewart AM, Cook MS, Esparza MC, et al. Architectural assessment of rhesus macaque pelvic floor muscles: comparison for use as a human model[J]. Int Urogynecol J, 2017, 28(10):1527-1535. doi: 10.1007/s00192-017-3303-x.
doi: 10.1007/s00192-017-3303-x pmid: 28285397 |
[19] |
Zhang Y, Ma Y, Chen J, et al. Mesenchymal stem cell transplantation for vaginal repair in an ovariectomized rhesus macaque model[J]. Stem Cell Res Ther, 2021, 12(1):406. doi: 10.1186/s13287-021-02488-2.
doi: 10.1186/s13287-021-02488-2 pmid: 34266489 |
[20] |
Pereira da Silva G, Souza Pereira TH, Felipe Lima AK, et al. Female squirrel monkeys as models for research on women′s pelvic floor disorders[J]. Lab Anim, 2021, 55(6):499-508. doi: 10.1177/00236772211032506.
doi: 10.1177/00236772211032506 |
[21] |
Åkervall S, Al-Mukhtar Othman J, Molin M, et al. Symptomatic pelvic organ prolapse in middle-aged women: a national matched cohort study on the influence of childbirth[J]. Am J Obstet Gynecol, 2020, 222(4):356.e1-e14. doi: 10.1016/j.ajog.2019.10.007.
doi: 10.1016/j.ajog.2019.10.007 |
[22] |
Palacios JL, Juárez R, Mirto-Aguilar N, et al. Time course for urethral neuromuscular reestablishment and its facilitated recovery by transcutaneous neuromodulation after simulated birth trauma in rats[J]. Sci Rep, 2021, 11(1):21591. doi: 10.1038/s41598-021-01200-x.
doi: 10.1038/s41598-021-01200-x pmid: 34732833 |
[23] |
Kishimoto S, Ishizuka M, Inoue KI, et al. Local transplantation of syngeneic adipose stromal vascular fraction ameliorates damaged anal sphincter function in a rat model of vaginal distension[J]. Surgery,2022 Aug 14:S0039- 6060(22) 00441-X. doi: 10.1016/j.surg.2022.06.015. Epub ahead of print.
doi: 10.1016/j.surg.2022.06.015 |
[24] |
Marcu RD, Mischianu D, Iorga L, et al. Oxidative Stress: A Possible Trigger for Pelvic Organ Prolapse[J]. J Immunol Res, 2020, 2020:3791934. doi: 10.1155/2020/3791934.
doi: 10.1155/2020/3791934 |
[25] |
Hu JM, Wang L, Cheng X, et al. Neuropeptide Y innervation in the vaginal mucosa among patients with pelvic organ prolapse[J]. Mol Med Rep, 2012, 5(2):444-448. doi: 10.3892/mmr.2011.689.
doi: 10.3892/mmr.2011.689 |
[26] |
Zhu YP, Xie T, Guo T, et al. Evaluation of extracellular matrix protein expression and apoptosis in the uterosacral ligaments of patients with or without pelvic organ prolapse[J]. Int Urogynecol J, 2021, 32(8):2273-2281. doi: 10.1007/s00192-020-04446-7.
doi: 10.1007/s00192-020-04446-7 |
[27] |
Deng ZM, Dai FF, Yuan MQ, et al. Advances in molecular mechanisms of pelvic organ prolapse (Review)[J]. Exp Ther Med, 2021, 22(3):1009. doi: 10.3892/etm.2021.10442.
doi: 10.3892/etm.2021.10442 |
[28] |
戴毓欣, 张国瑞, 郎景和, 等. 女性盆底神经损伤动物模型的建立及效果评价[J]. 中华医学杂志, 2019, 99(17):1336-1339. doi: 10.3760/cma.j.issn.0376-2491.2019.17.013.
doi: 10.3760/cma.j.issn.0376-2491.2019.17.013 |
[29] |
吴桂珠, 王金华, 郑珊, 等. 切断双侧阴部神经建立女性压力性尿失禁的动物模型及效果评价[J]. 中国妇产科临床杂志, 2016, 17(6):533-537. doi: 10.13390/j.issn.1672-1861.2016.06.016.
doi: 10.13390/j.issn.1672-1861.2016.06.016 |
[30] |
Yuan H, Ruan Y, Tan Y, et al. Regenerating Urethral Striated Muscle by CRISPRi/dCas9-KRAB-Mediated Myostatin Silencing for Obesity-Associated Stress Urinary Incontinence[J]. CRISPR J, 2020, 3(6):562-572. doi: 10.1089/crispr.2020.0077.
doi: 10.1089/crispr.2020.0077 pmid: 33346712 |
[31] |
Wang B, Ruan Y, Zhou T, et al. The effects of microenergy acoustic pulses on an animal model of obesity-associated stress urinary incontinence. Part 1: Functional and histologic studies[J]. Neurourol Urodyn, 2019, 38(8):2130-2139. doi: 10.1002/nau.24160.
doi: 10.1002/nau.24160 |
[32] |
Knight KM, Artsen AM, Routzong MR, et al. New Zealand white rabbit: a novel model for prolapse mesh implantation via a lumbar colpopexy[J]. Int Urogynecol J, 2020, 31(1):91-99. doi: 10.1007/s00192-019-04071-z.
doi: 10.1007/s00192-019-04071-z pmid: 31418044 |
[33] |
Shveiky D, Iglesia CB, Sarkar Das S, et al. Age-associated impairments in tissue strength and immune response in a rat vaginal injury model[J]. Int Urogynecol J, 2020, 31(7):1435-1441. doi: 10.1007/s00192-019-04008-6.
doi: 10.1007/s00192-019-04008-6 pmid: 31243497 |
[34] |
Shahryarinejad A, Gardner TR, Cline JM, et al. Effect of hormone replacement and selective estrogen receptor modulators (SERMs) on the biomechanics and biochemistry of pelvic support ligaments in the cynomolgus monkey (Macaca fascicularis)[J]. Am J Obstet Gynecol, 2010, 202(5):485.e1-e9. doi: 10.1016/j.ajog.2010.01.074.
doi: 10.1016/j.ajog.2010.01.074 |
[35] |
Kwon J, Suzuki T, Takaoka EI, et al. Analysis of continence reflexes by dynamic urethral pressure recordings in a rat stress urinary incontinence model induced by multiple simulated birth traumas[J]. Am J Physiol Renal Physiol, 2019, 317(4):781-788. doi: 10.1152/ajprenal.00197.2019.
doi: 10.1152/ajprenal.00197.2019 |
[36] |
Isali I, Abdeldayem J, El-Nashar S. Gene expression in urinary incontinence and pelvic organ prolapse: a review of literature[J]. Curr Opin Obstet Gynecol, 2020, 32(6):441-448. doi: 10.1097/GCO.0000000000000661.
doi: 10.1097/GCO.0000000000000661 |
[37] |
Jameson SA, Swaminathan G, Dahal S, et al. Elastin homeostasis is altered with pelvic organ prolapse in cultures of vaginal cells from a lysyl oxidase-like 1 knockout mouse model[J]. Physiol Rep, 2020, 8(11):e14436. doi: 10.14814/phy2.14436.
doi: 10.14814/phy2.14436 |
[38] |
Chin K, Wieslander C, Shi H, et al. Pelvic Organ Support in Animals with Partial Loss of Fibulin-5 in the Vaginal Wall[J]. PLoS One, 2016, 11(4):e0152793. doi: 10.1371/journal.pone.0152793.
doi: 10.1371/journal.pone.0152793 |
[39] |
Liang CC, Shaw SS, Chou HH, et al. Amniotic Fluid Stem Cells Improve Rat Bladder Dysfunction After Pelvic Nerve Transection[J]. Cell Transplant, 2020, 29:963689720909387. doi: 10.1177/0963689720909387.
doi: 10.1177/0963689720909387 |
[40] |
Clark-Patterson GL, Roy S, Desrosiers L, et al. Role of fibulin-5 insufficiency and prolapse progression on murine vaginal biomechanical function[J]. Sci Rep, 2021, 11(1):20956. doi: 10.1038/s41598-021-00351-1.
doi: 10.1038/s41598-021-00351-1 pmid: 34697337 |
[1] | 林环宇, 于敏, 路旭宏. 产后盆底功能障碍性疾病高危因素的研究进展[J]. 国际妇产科学杂志, 2024, 51(6): 620-623. |
[2] | 邵辉, 王璐, 陈鹿嘉, 董芮嘉, 汤洁莹, 廖雪吟, 杨建民, 李薇薇. 新型温控射频治疗女性产后阴道松弛症的前瞻性随机对照研究[J]. 国际妇产科学杂志, 2024, 51(5): 509-514. |
[3] | 谭谧, 谭青青. 盆底功能障碍性疾病的非手术治疗方法进展[J]. 国际妇产科学杂志, 2024, 51(4): 401-405. |
[4] | 刘书杰, 张海燕. 腹腔镜下侧腹壁悬吊术及其改良术式治疗盆腔器官脱垂的研究进展[J]. 国际妇产科学杂志, 2024, 51(2): 121-127. |
[5] | 薛凤琴, 赵书睿, 赵烨. 人子宫骶韧带的解剖组织学特征和相关生物力学研究进展[J]. 国际妇产科学杂志, 2023, 50(6): 606-612. |
[6] | 朱静, 夏志军. 人阴道成纤维细胞功能紊乱与盆腔器官脱垂[J]. 国际妇产科学杂志, 2023, 50(6): 613-617. |
[7] | 宋文静, 王晶, 刘美华, 王晓慧. 温控射频治疗盆底功能障碍性疾病的研究进展[J]. 国际妇产科学杂志, 2023, 50(2): 176-180. |
[8] | 王树瑜, 王温馨, 赵烨. 磁共振成像在盆腔器官脱垂诊治中的价值[J]. 国际妇产科学杂志, 2023, 50(1): 116-120. |
[9] | 庞昀婷, 马庆玲, 孟凡青, 刘伟, 郭亚秋. 椎管内分娩镇痛对初产妇盆底功能的影响[J]. 国际妇产科学杂志, 2023, 50(1): 70-73. |
[10] | 吴珍珍, 魏颖, 郑婧, 王惠玲, 刘青. 腹腔镜阴道骶骨固定术后骶前感染一例并文献复习[J]. 国际妇产科学杂志, 2022, 49(2): 172-175. |
[11] | 王丽, 王佳, 魏筱萱, 牛海英. 子宫托治疗女性盆腔器官脱垂并发症的研究[J]. 国际妇产科学杂志, 2021, 48(6): 700-703. |
[12] | 贾红靖, 邓学东, 陈小敏, 曹皎皎, 马蕾, 陆冰. 经会阴三维及四维超声测量肛提肌裂孔面积在盆腔器官脱垂诊断中的应用[J]. 国际妇产科学杂志, 2021, 48(4): 434-437. |
[13] | 向雪冰, 胡清, 夏志军. 经阴道网片置入手术的利与弊[J]. 国际妇产科学杂志, 2021, 48(2): 219-223. |
[14] | 王冬亮, 李青, 胡滨, 邓克红, 黄冬梅. 经脐单孔腹腔镜下子宫“Y”网骶骨固定术一例[J]. 国际妇产科学杂志, 2021, 48(2): 235-237. |
[15] | 白军, 郝玉婧, 高艳萍△. 阴道松弛症病因学研究进展[J]. 国际妇产科学杂志, 2020, 47(4): 417-421. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||