[1] |
Kumariya S, Ubba V, Jha RK, et al. Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective[J]. Autophagy, 2021, 17(10):2706-2733. doi: 10.1080/15548627.2021.1938914.
|
[2] |
多囊卵巢综合征相关不孕治疗及生育保护共识专家组, 中华预防医学会生育力保护分会生殖内分泌生育保护学组. 多囊卵巢综合征相关不孕治疗及生育保护共识[J]. 生殖医学杂志, 2020, 29(7):843-851. doi: 10.3969/j.issn.1004-3845.2020.07.002.
|
[3] |
Ruan J, Shi Z, Cao X, et al. Research Progress on Anti-Inflammatory Effects and Related Mechanisms of Astragalin[J]. Int J Mol Sci, 2024, 25(8):4476. doi: 10.3390/ijms25084476.
|
[4] |
Li L, Zhang G, Yang Z, et al. Stress-Activated Protein Kinases in Intervertebral Disc Degeneration: Unraveling the Impact of JNK and p38 MAPK[J]. Biomolecules, 2024, 14(4):393. doi: 10.3390/biom14040393.
|
[5] |
Fliegel L. Structural and Functional Changes in the Na+/H+ Exchanger Isoform 1, Induced by Erk1/2 Phosphorylation[J]. Int J Mol Sci, 2019, 20(10):2378. doi: 10.3390/ijms20102378.
|
[6] |
Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases[J]. Microbiol Mol Biol Rev, 2011, 75(1):50-83. doi: 10.1128/MMBR.00031-10.
|
[7] |
Zhang Z, Yang Z, Wang S, et al. Targeting MAPK-ERK/JNK pathway: A potential intervention mechanism of myocardial fibrosis in heart failure[J]. Biomed Pharmacother, 2024, 173:116413. doi: 10.1016/j.biopha.2024.116413.
|
[8] |
Wortzel I, Seger R. The ERK Cascade: Distinct Functions within Various Subcellular Organelles[J]. Genes Cancer, 2011, 2(3):195-209. doi: 10.1177/1947601911407328.
pmid: 21779493
|
[9] |
Nadel G, Maik-Rachline G, Seger R. JNK Cascade-Induced Apoptosis-A Unique Role in GqPCR Signaling[J]. Int J Mol Sci, 2023, 24(17):13527. doi: 10.3390/ijms241713527.
|
[10] |
Steiner JL, Lang CH. Alcohol intoxication following muscle contraction in mice decreases muscle protein synthesis but not mTOR signal transduction[J]. Alcohol Clin Exp Res, 2015, 39(1):1-10. doi: 10.1111/acer.12600.
pmid: 25623400
|
[11] |
Bogoyevitch MA, Kobe B. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases[J]. Microbiol Mol Biol Rev, 2006, 70(4):1061-1095. doi: 10.1128/MMBR.00025-06.
|
[12] |
Wang J, Liu Y, Guo Y, et al. Function and inhibition of P38 MAP kinase signaling: Targeting multiple inflammation diseases[J]. Biochem Pharmacol, 2024, 220:115973. doi: 10.1016/j.bcp.2023.115973.
|
[13] |
Kahnamouyi S, Nouri M, Farzadi L, et al. The role of mitogen-activated protein kinase-extracellular receptor kinase pathway in female fertility outcomes: a focus on pituitary gonadotropins regulation[J]. Ther Adv Endocrinol Metab, 2018, 9(7):209-215. doi: 10.1177/2042018818772775.
|
[14] |
Fan HY, Sun QY. Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals[J]. Biol Reprod, 2004, 70(3):535-547. doi: 10.1095/biolreprod.103.022830.
|
[15] |
Dupont J, Scaramuzzi RJ. Insulin signalling and glucose transport in the ovary and ovarian function during the ovarian cycle[J]. Biochem J, 2016, 473(11):1483-1501. doi: 10.1042/BCJ20160124.
pmid: 27234585
|
[16] |
Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications[J]. Endocr Rev, 2012, 33(6):981-1030. doi: 10.1210/er.2011-1034.
pmid: 23065822
|
[17] |
任露露, 任文超, 张晓轩, 等. 多囊卵巢综合征患者卵巢颗粒细胞胰岛素抵抗的相关信号通路[J]. 国际生殖健康/计划生育杂志, 2024, 43(1):32-37. doi: 10.12280/gjszjk.20230330.
|
[18] |
Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis[J]. Endocr Rev, 1997, 18(6):774-800. doi: 10.1210/edrv.18.6.0318.
pmid: 9408743
|
[19] |
Sinha S, Haque M. Insulin Resistance and Type 2 Diabetes Mellitus: An Ultimatum to Renal Physiology[J]. Cureus, 2022, 14(9):e28944. doi: 10.7759/cureus.28944.
|
[20] |
Tiwary R, Yu W, Sanders BG, et al. α-TEA cooperates with MEK or mTOR inhibitors to induce apoptosis via targeting IRS/PI3K pathways[J]. Br J Cancer, 2011, 104(1):101-109. doi: 10.1038/sj.bjc.6606019.
|
[21] |
Jefferi NES, Shamhari A′, Hamid ZA, et al. Knowledge Gap in Understanding the Steroidogenic Acute Regulatory Protein Regulation in Steroidogenesis Following Exposure to Bisphenol A and Its Analogues[J]. Biomedicines, 2022, 10(6):1281. doi: 10.3390/biomedicines10061281.
|
[22] |
Hu L, Zhang Y, Chen L, et al. MAPK and ERK polymorphisms are associated with PCOS risk in Chinese women[J]. Oncotarget, 2017, 8(59):100261-100268. doi: 10.18632/oncotarget.22153.
|
[23] |
Dong JT. Prevalent mutations in prostate cancer[J]. J Cell Biochem, 2006, 97(3):433-447. doi: 10.1002/jcb.20696.
|
[24] |
颜孟晗, 孙振高, 曹靖先, 等. 多囊卵巢综合征卵泡内信号转导通路与高雄激素血症的关系[J]. 生殖医学杂志, 2022, 31(1):116-122. doi: 10.3969/j.issn.1004-3845.2022.01.022.
|
[25] |
Liu S, Jia Y, Meng S, et al. Mechanisms of and Potential Medications for Oxidative Stress in Ovarian Granulosa Cells: A Review[J]. Int J Mol Sci, 2023, 24(11):9205. doi: 10.3390/ijms24119205.
|
[26] |
Zanjirband M, Hodayi R, Safaeinejad Z, et al. Evaluation of the p53 pathway in polycystic ovarian syndrome pathogenesis and apoptosis enhancement in human granulosa cells through transcriptome data analysis[J]. Sci Rep, 2023, 13(1):11648. doi: 10.1038/s41598-023-38340-1.
pmid: 37468508
|
[27] |
Xu R, Wang Z. Involvement of Transcription Factor FoxO1 in the Pathogenesis of Polycystic Ovary Syndrome[J]. Front Physiol, 2021, 12:649295. doi: 10.3389/fphys.2021.649295.
|
[28] |
Zong B, Xiao Y, Ren M, et al. Baicalin Weakens the Porcine ExPEC-Induced Inflammatory Response in 3D4/21 Cells by Inhibiting the Expression of NF-κB/MAPK Signaling Pathways and Reducing NLRP3 Inflammasome Activation[J]. Microorganisms, 2023, 11(8):2126. doi: 10.3390/microorganisms11082126.
|
[29] |
Wang L, Hauenstein AV. The NLRP3 inflammasome: Mechanism of action, role in disease and therapies[J]. Mol Aspects Med, 2020, 76:100889. doi: 10.1016/j.mam.2020.100889.
|
[30] |
Islamuddin M, Qin X. Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics[J]. Cell Death Discov, 2024, 10(1):229. doi: 10.1038/s41420-024-01996-3.
pmid: 38740765
|
[31] |
李青青, 盛慧清. 调经促孕丸联合来曲唑对多囊卵巢综合征患者性激素水平和卵巢功能的影响[J]. 中国妇幼保健, 2024, 39(16):3087-3090. doi: 10.19829/j.zgfybj.issn.1001-4411.2024.16.022.
|
[32] |
Wang YS, Li BY, Xing YF, et al. Puerarin Ameliorated PCOS through Preventing Mitochondrial Dysfunction Dependent on the Maintenance of Intracellular Calcium Homeostasis[J]. J Agric Food Chem, 2024, 72(6):2963-2976. doi: 10.1021/acs.jafc.3c06361.
|
[33] |
Shi XK, Peng T, Azimova B, et al. Luteolin and its analog luteolin-7-methylether from Leonurus japonicus Houtt suppress aromatase-mediated estrogen biosynthesis to alleviate polycystic ovary syndrome by the inhibition of tumor progression locus 2[J]. J Ethnopharmacol, 2024, 331:118279. doi: 10.1016/j.jep.2024.118279.
|
[34] |
Bai X, Wang S, Shu L, et al. Hawthorn leaf flavonoids alleviate the deterioration of atherosclerosis by inhibiting SCAP-SREBP2-LDLR pathway through sPLA2-ⅡA signaling in macrophages in mice[J]. J Ethnopharmacol, 2024, 327:118006. doi: 10.1016/j.jep.2024.118006.
|
[35] |
徐琴, 王静, 黄武. 山楂叶黄酮调节p38 MAPK/STAT3信号通路对多囊卵巢综合征大鼠炎症反应的影响[J]. 中国优生与遗传杂志, 2022, 30(12):2121-2126. doi: 10.13404/j.cnki.cjbhh.2022.12.040.
|
[36] |
赵千影, 汪栋材, 吴海滨, 等. 菟丝子总黄酮对PCOS大鼠血清甲状腺激素、排卵障碍的影响及机制研究[J]. 中医药导报, 2022, 28(5):30-34. doi: 10.13862/j.cn43-1446/r.2022.05.007.
|
[37] |
Li X, Dong X, Zhang L, et al. Astragaloside Ⅳ attenuates renal tubule injury in DKD rats via suppression of CD36-mediated NLRP3 inflammasome activation[J]. Front Pharmacol, 2024, 15:1285797. doi: 10.3389/fphar.2024.1285797.
|
[38] |
刘冷, 贺春花. 黄芪甲苷对肥胖型多囊卵巢综合征大鼠胰岛素抵抗及MAPK/ERK通路的影响[J]. 中成药, 2024, 46(1):94-100. doi: 10.3969/j.issn.1001-1528.2024.01.016.
|
[39] |
李艳青, 赵方, 傅金英, 等. 黄芪甲苷对多囊卵巢综合征大鼠性激素水平及氧化应激损伤的影响[J]. 中国病理生理杂志, 2020, 36(12):2244-2250. doi: 10.3969/j.issn.1000-4718.2020.12.017.
|
[40] |
Zhang J, Li Y, Wan J, et al. Artesunate: A review of its therapeutic insights in respiratory diseases[J]. Phytomedicine, 2022, 104:154259. doi: 10.1016/j.phymed.2022.154259.
|
[41] |
韦奕, 张淑芬, 黄梦颖, 等. 青蒿琥酯对多囊卵巢综合征模型大鼠卵巢组织形态的影响[J]. 天津医药, 2022, 50(6):588-594. doi: 10.11958/20212673.
|
[42] |
Almatroodi SA, Alsahli MA, Rahmani AH. Berberine: An Important Emphasis on Its Anticancer Effects through Modulation of Various Cell Signaling Pathways[J]. Molecules, 2022, 27(18):5889. doi: 10.3390/molecules27185889.
|
[43] |
赵粉琴, 赵艳, 刘洁颖, 等. 黄连素对PCOS模型大鼠LPS/NF-κB、MAPK信号通路的影响[J]. 中国应用生理学杂志, 2022, 38(2):181-186,192. doi: 10.12047/j.cjap.6229.2022.029.
|
[44] |
周笑梦, 李雪莲. 中药提取物改善多囊卵巢综合征中胰岛素抵抗的研究进展[J]. 国际妇产科学杂志, 2018, 45(3):287-290,305. doi: 10.3969/j.issn.1674-1870.2018.03.012.
|
[45] |
陈维萍, 南楚, 刘怡伽, 等. 黄连素通过调控丝裂原活化蛋白激酶信号通路治疗各科疾病的药理机制研究进展[J]. 环球中医药, 2023, 16(8):1707-1714. doi: 10.3969/j.issn.1674-1749.2023.08.045.
|
[46] |
李乔, 张博. 茯苓多糖对2型糖尿病大鼠丝裂原激活的蛋白激酶通路及胰岛素抵抗的影响[J]. 安徽医药, 2022, 26(12):2379-2382. doi: 10.3969/j.issn.1009-6469.2022.12.010.
|