[1] |
Yasuo T, Kitaya K. Challenges in Clinical Diagnosis and Management of Chronic Endometritis[J]. Diagnostics(Basel), 2022, 12(11):2711. doi: 10.3390/diagnostics12112711.
|
[2] |
Kitaya K, Takeuchi T, Mizuta S, et al. Endometritis: new time, new concepts[J]. Fertil Steril, 2018, 110(3):344-350. doi: 10.1016/j.fertnstert.2018.04.012.
pmid: 29960704
|
[3] |
Cicinelli E, Cicinelli R, Vitagliano A. Consistent evidence on the detrimental role of severe chronic endometritis on in vitro fertilization outcome and the reproductive improvement after antibiotic therapy: on the other hand, mild chronic endometritis appears a more intricate matter[J]. Fertil Steril, 2021, 116(2):345-346. doi: 10.1016/j.fertnstert.2021.06.022.
|
[4] |
Hassaan NA, Mansour HA. Exosomal therapy is a luxury area for regenerative medicine[J]. Tissue Cell, 2024,91:102570. doi: 10.1016/ j.tice.2024.102570.
|
[5] |
Agarwal P, Anees A, Harsiddharay RK, et al. A Comprehensive Review on Exosome: Recent Progress and Outlook[J]. Pharm Nanotechnol,2023 May 23. doi: 10.2174/2211738511666230523114311.Epub ahead of print.
|
[6] |
Yang L, Su Y, Cai S, et al. Regional Analysis of the Immune Microenvironment in Human Endometrium[J]. Am J Reprod Immunol, 2024, 92(3):e13921. doi: 10.1111/aji.13921.
|
[7] |
Brown E, Martínez-Aguilar R, Maybin JA, et al. Endometrial macrophages in health and disease[J]. Int Rev Cell Mol Biol, 2022, 367:183-208. doi: 10.1016/bs.ircmb.2022.03.011.
pmid: 35461658
|
[8] |
Marron K, Harrity C. Potential utility of a non-invasive menstrual blood immunophenotype analysis in reproductive medicine[J]. Reprod Fertil, 2022, 3(4):255-261. doi: 10.1530/RAF-22-0047.
|
[9] |
Schulke L, Manconi F, Markham R, et al. Endometrial dendritic cell populations during the normal menstrual cycle[J]. Hum Reprod, 2008, 23(7):1574-1580. doi: 10.1093/humrep/den030.
|
[10] |
Díaz-Hernández I, Alecsandru D, García-Velasco JA, et al. Uterine natural killer cells: from foe to friend in reproduction[J]. Hum Reprod Update, 2021, 27(4):720-746. doi: 10.1093/humupd/dmaa062.
pmid: 33528013
|
[11] |
Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions[J]. Immunity, 2010, 32(5):593-604. doi: 10.1016/j.immuni.2010.05.007.
pmid: 20510870
|
[12] |
Di Vincenzo S, Ferraro M, Taverna S, et al. Tyndallized Bacteria Preferentially Induce Human Macrophage M1 Polarization: An Effect Useful to Balance Allergic Immune Responses and to Control Infections[J]. Antibiotics(Basel), 2023, 12(3):571. doi: 10.3390/antibiotics12030571.
|
[13] |
Wang LL, Li ZH, Wang H, et al. Cutting edge: the regulatory mechanisms of macrophage polarization and function during pregnancy[J]. J Reprod Immunol, 2022,151:103627. doi: 10.1016/j.jri.2022.103627.
|
[14] |
Luo W, Hoang H, Miller KE, et al. Combinatorial macrophage induced innate immunotherapy against Ewing sarcoma: Turning "Two Keys" simultaneously[J]. J Exp Clin Cancer Res, 2024, 43(1):193. doi: 10.1186/s13046-024-03093-w.
pmid: 38992659
|
[15] |
Kang S, Jin S, Mao X, et al. CD4+T and CD8+T Cells in Uterus Exhibit Both Selective Dysfunction and Residency Signatures[J]. J Immunol Res, 2024,2024:5582151. doi: 10.1155/2024/5582151.
|
[16] |
Rao VA, Kurian NK, Rao KA. Cytokines, NK cells and regulatory T cell functions in normal pregnancy and reproductive failures[J]. Am J Reprod Immunol, 2023, 89(2):e13667. doi: 10.1111/aji.13667.
|
[17] |
Shen M, O′Donnell E, Leon G, et al. The role of endometrial B cells in normal endometrium and benign female reproductive pathologies: a systematic review[J]. Hum Reprod Open, 2022, 2022(1):hoab043. doi: 10.1093/hropen/hoab043.
|
[18] |
Shen M, Child T, Mittal M, et al. B Cell Subset Analysis and Gene Expression Characterization in Mid-Luteal Endometrium[J]. Front Cell Dev Biol, 2021,9:709280. doi: 10.3389/fcell.2021.709280.
|
[19] |
Bora M, Singha S, Madan T, et al. HLA-G isoforms, HLA-C allotype and their expressions differ between early abortus and placenta in relation to spontaneous abortions[J]. Placenta, 2024, 149:44-53. doi: 10.1016/j.placenta.2024.02.009.
pmid: 38492472
|
[20] |
Pirtea P, Cicinelli E, De Nola R, et al. Endometrial causes of recurrent pregnancy losses: endometriosis, adenomyosis, and chronic endometritis[J]. Fertil Steril, 2021, 115(3):546-560. doi: 10.1016/j.fertnstert.2020.12.010.
pmid: 33581856
|
[21] |
Kitazawa J, Kimura F, Nakamura A, et al. Alteration in endometrial helper T-cell subgroups in chronic endometritis[J]. Am J Reprod Immunol, 2021, 85(3):e13372. doi: 10.1111/aji.13372.
|
[22] |
Li Y, Yu S, Huang C, et al. Evaluation of peripheral and uterine immune status of chronic endometritis in patients with recurrent reproductive failure[J]. Fertil Steril, 2020, 113(1):187-196.e1. doi: 10.1016/j.fertnstert.2019.09.001.
pmid: 31718829
|
[23] |
Chen X, Liu Y, Zhao Y, et al. Association between chronic endometritis and uterine natural killer cell density in women with recurrent miscarriage: clinical implications[J]. J Obstet Gynaecol Res, 2020, 46(6):858-863. doi: 10.1111/jog.14250.
|
[24] |
Wang WJ, Zhang H, Chen ZQ, et al. Endometrial TGF-β, IL-10, IL-17 and autophagy are dysregulated in women with recurrent implantation failure with chronic endometritis[J]. Reprod Biol Endocrinol, 2019, 17(1):2. doi: 10.1186/s12958-018-0444-9.
|
[25] |
Driva TS, Schatz C, M, et al. The Role of mTOR and eIF Signaling in Benign Endometrial Diseases[J]. Int J Mol Sci, 2022, 23(7):3416. doi: 10.3390/ijms23073416.cˇSoboan
|
[26] |
Zeng S, Liu X, Liu D, et al. Research update for the immune microenvironment of chronic endometritis[J]. J Reprod Immunol, 2022,152:103637. doi: 10.1016/j.jri.2022.103637.
|
[27] |
Muter J, Lynch VJ, McCoy RC, et al. Human embryo implantation[J]. Development, 2023, 150(10):dev201507. doi: 10.1242/dev.201507.
|
[28] |
Pan Z, Zhao R, Li B, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3[J]. Mol Cancer, 2022, 21(1):16. doi: 10.1186/s12943-021-01485-6.
pmid: 35031058
|
[29] |
Zhang Y, Zhu L, Li X, et al. M2 macrophage exosome-derived lncRNA AK083884 protects mice from CVB3-induced viral myocarditis through regulating PKM2/HIF-1α axis mediated metabolic reprogramming of macrophages[J]. Redox Biol, 2024,69:103016. doi: 10.1016/j.redox.2023.103016.
|
[30] |
Yan Q, Song C, Liu H, et al. Adipose-derived stem cell exosomes loaded with icariin attenuated M1 polarization of macrophages via inhibiting the TLR4/Myd88/NF-κB signaling pathway[J]. Int Immunopharmacol, 2024,137:112448. doi: 10.1016/j.intimp.2024.112448.
|
[31] |
Fang Z, Mao J, Huang J, et al. Increased levels of villus-derived exosomal miR-29a-3p in normal pregnancy than uRPL patients suppresses decidual NK cell production of interferon-γ and exerts a therapeutic effect in abortion-prone mice[J]. Cell Commun Signal, 2024, 22(1):230. doi: 10.1186/s12964-024-01610-0.
pmid: 38627796
|
[32] |
Wang R, Li R, Li T, et al. Bone Mesenchymal Stem Cell-Derived Exosome-Enclosed miR-181a Induces CD4+CD25+FOXP3+ Regulatory T Cells via SIRT1/Acetylation-Mediated FOXP3 Stabilization[J]. J Oncol, 2022,2022:8890434. doi: 10.1155/2022/8890434.
|
[33] |
Taravat M, Asadpour R, Jozani RJ, et al. Enhanced anti-inflammatory effect of Rosmarinic acid by encapsulation and combination with the exosome in mice with LPS-induced endometritis through suppressing the TLR4-NLRP3 signaling pathway[J]. J Reprod Immunol, 2023, 159:103992. doi: 10.1016/j.jri.2023.103992.
|
[34] |
Taravat M, Asadpour R, Jafari Jozani R, et al. Engineered exosome as a biological nanoplatform for drug delivery of Rosmarinic acid to improve implantation in mice with induced endometritis[J]. Syst Biol Reprod Med, 2024, 70(1):3-19. doi: 10.1080/19396368.2024.2306420.
pmid: 38323586
|
[35] |
Chen Y, Zheng S, Zhao X, et al. Unveiling the protective effects of BMSCs/anti-miR-124-3p exosomes on LPS-induced endometrial injury[J]. Funct Integr Genomics, 2024, 24(2):32. doi: 10.1007/s10142-024-01303-4.
|
[36] |
Wang B, Li L, Yu R. Exosomes From Adipose-Derived Stem Cells Suppress the Progression of Chronic Endometritis[J]. Cell Transplant, 2023,32:9636897231173736. doi: 10.1177/09636897231173736.
|
[37] |
Zhao C, Li J, Cai H, et al. An injectable hydrogel scaffold with IL-1β-activated MSC-derived exosomes for the treatment of endometritis[J]. Biomater Sci, 2023, 11(4):1422-1436. doi: 10.1039/d2bm01586b.
|
[38] |
Wang X, Tian F, Chen C, et al. Exosome-derived uterine microRNAs isolated from cows with endometritis impede blastocyst development[J]. Reprod Biol, 2019, 19(2):204-209. doi: 10.1016/j.repbio.2019.06.003.
pmid: 31196738
|
[39] |
Wang X, Yao X, Xie T, et al. Exosome-derived uterine miR-218 isolated from cows with endometritis regulates the release of cytokines and chemokines[J]. Microb Biotechnol, 2020, 13(4):1103-1117. doi: 10.1111/1751-7915.13565.
pmid: 32227590
|
[40] |
Wang X, Li Q, Xie T, et al. Exosomes from bovine endometrial epithelial cells ensure trophoblast cell development by miR-218 targeting secreted frizzled related protein 2[J]. J Cell Physiol, 2021, 236(6):4565-4579. doi: 10.1002/jcp.30180.
pmid: 33230823
|
[41] |
Jiang K, Chen Y, Wang K, et al. miR-331-depleted exosomes derived from injured endometrial epithelial cells promote macrophage activation during endometritis[J]. Int J Biol Macromol, 2024, 279(Pt 4):134967. doi: 10.1016/j.ijbiomac.2024.134967.
|