[1] |
Chen Z, Zhang W, Wu M, et al. Pathogenic mechanisms of preeclampsia with severe features implied by the plasma exosomal mirna profile[J]. Bioengineered, 2021, 12(2):9140-9149. doi: 10.1080/21655979.2021.1993717.
pmid: 34696680
|
[2] |
Yang M, Wang M, Li N. Advances in pathogenesis of preeclampsia[J]. Arch Gynecol Obstet, 2024, 309(5):1815-1823. doi: 10.1007/s00404-024-07393-6.
|
[3] |
Wu S, Li Q, Liu X, et al. Placental exosomal miR-125b triggered endothelial barrier injury in preeclampsia[J]. Placenta, 2023, 137:31-37. doi: 10.1016/j.placenta.2023.04.006.
pmid: 37054628
|
[4] |
Tang P, Wang J, Wang L, et al. High Throughput Sequencing Analysis of Exosomal miRNA Expressions in Early-Onset Preeclampsia Patients[J]. Clin Lab, 2023, 69(2):300-305. doi: 10.7754/Clin.Lab.2022.220430.
|
[5] |
Zhu L, Zhang Z, Zhang L, et al. HMGB1-RAGE signaling pathway in severe preeclampsia[J]. Placenta, 2015, 36(10):1148-1152. doi: 10.1016/j.placenta.2015.08.006.
pmid: 26303759
|
[6] |
Sun F, Peers de Nieuwburgh M, Hubinont C, et al. Gene therapy in preeclampsia: the dawn of a new era[J]. Hypertens Pregnancy, 2024, 43(1):2358761. doi: 10.1080/10641955.2024.2358761.
|
[7] |
Chamberlain F, Grammatopoulos D. Methodology for Isolation of miRNA From the Serum of Women Investigated for Pre-eclampsia[J]. Cureus, 2023, 15(9):e46181. doi: 10.7759/cureus.46181.
|
[8] |
Vollmann EH, Rattay K, Barreiro O, et al. Specialized transendothelial dendritic cells mediate thymic T-cell selection against blood-borne macromolecules[J]. Nat Commun, 2021, 12(1):6230. doi: 10.1038/s41467-021-26446-x.
pmid: 34711828
|
[9] |
Suga Y, Nagatomo I, Kinehara Y, et al. IL-33 Induces Sema4A Expression in Dendritic Cells and Exerts Antitumor Immunity[J]. J Immunol, 2021, 207(5):1456-1467. doi: 10.4049/jimmunol.2100076.
pmid: 34380650
|
[10] |
班立芳, 赵广超, 孔庆飞, 等. 妊娠期高血压疾病患者血清Th1和Th2细胞因子的变化及临床意义[J]. 检验医学与临床, 2021, 18(2):259-261. doi: 10.3969/j.issn.1672-9455.2021.02.035.
|
[11] |
Ghafourian M, Mahdavi R, Akbari Jonoush Z, et al. The implications of exosomes in pregnancy: emerging as new diagnostic markers and therapeutics targets[J]. Cell Commun Signal, 2022, 20(1):51. doi: 10.1186/s12964-022-00853-z.
pmid: 35414084
|
[12] |
Liu M, Wen Z, Zhang T, et al. The role of exosomal molecular cargo in exosome biogenesis and disease diagnosis[J]. Front Immunol, 2024,15:1417758. doi: 10.3389/fimmu.2024.1417758.
|
[13] |
Wan R, Liu S, Feng X, et al. The Revolution of exosomes: From biological functions to therapeutic applications in skeletal muscle diseases[J]. J Orthop Translat, 2024, 45:132-139. doi: 10.1016/j.jot.2024.01.001.
|
[14] |
Devvanshi H, Kachhwaha R, Manhswita A, et al. Immunological Changes in Pregnancy and Prospects of Therapeutic Pla-Xosomes in Adverse Pregnancy Outcomes[J]. Front Pharmacol, 2022,13:895254. doi: 10.3389/fphar.2022.895254.
|
[15] |
Cooke WR, Jones GD, Redman CW, et al. Small RNAs in the pathogenesis of preeclampsia[J]. Placenta, 2024, 157:21-27. doi: 10.1016/j.placenta.2024.06.009.
|
[16] |
Javadi M, Rad JS, Farashah M, et al. An Insight on the Role of Altered Function and Expression of Exosomes and MicroRNAs in Female Reproductive Diseases[J]. Reprod Sci, 2022, 29(5):1395-1407. doi: 10.1007/s43032-021-00556-9.
|
[17] |
Moghaddam MM, Behzadi E, Sedighian H, et al. Regulation of immune responses to infection through interaction between stem cell-derived exosomes and toll-like receptors mediated by microRNA cargoes[J]. Front Cell Infect Microbiol, 2024,14:1384420. doi: 10.3389/fcimb.2024.1384420.
|
[18] |
Li Z, Wu Y, Tan G, et al. Exosomes and exosomal miRNAs: A new therapy for intervertebral disc degeneration[J]. Front Pharmacol, 2022,13:992476. doi: 10.3389/fphar.2022.992476.
|
[19] |
Maligianni I, Yapijakis C, Nousia K, et al. Exosomes and exosomal non-coding RNAs throughout human gestation (Review)[J]. Exp Ther Med, 2022, 24(3):582. doi: 10.3892/etm.2022.11518.
pmid: 35949320
|
[20] |
Yan M, Sun Z, Zhang S, et al. SOCS modulates JAK-STAT pathway as a novel target to mediate the occurrence of neuroinflammation: Molecular details and treatment options[J]. Brain Res Bull, 2024, 213:110988. doi: 10.1016/j.brainresbull.2024.110988.
|
[21] |
李天航, 史冬梅. SOCS调控树突状细胞在炎症性皮肤病中的作用机制研究进展[J]. 中国麻风皮肤病杂志, 2017, 33(7):440-443.
|
[22] |
Bidgood GM, Keating N, Doggett K, et al. SOCS1 is a critical checkpoint in immune homeostasis, inflammation and tumor immunity[J]. Front Immunol, 2024,15:1419951. doi: 10.3389/fimmu.2024.1419951.
|
[23] |
Jia J, Zhou X, Chu Q. Mechanisms and therapeutic prospect of the JAK-STAT signaling pathway in liver cancer[J]. Mol Cell Biochem, 2024 Mar 22. doi: 10.1007/s11010-024-04983-5.Epub ahead of pnint.
|
[24] |
Wilson T, Shaddeau A, Vaught A JJ, et al. 1003 Suppressor of cytokine signaling-1: a potential mechanistic target the immune system imbalance in preeclampsia development[J]. Am J Obstet Gynecol, 2021, 224(2):S621-S622. doi: 10.1016/j.ajog.2020.12.1028.
|
[25] |
Zolfaghari MA, Arefnezhad R, Parhizkar F, et al. T lymphocytes and preeclampsia: The potential role of T-cell subsets and related MicroRNAs in the pathogenesis of preeclampsia[J]. Am J Reprod Immunol, 2021, 86(5):e13475. doi: 10.1111/aji.13475.
|
[26] |
葛改, 杨智雅, 张祥宇, 等. SOCS通过调控JAK/STAT通路影响Th细胞分化在感染性疾病中的作用研究进展[J]. 中国真菌学杂志, 2021, 16(1):51-55. doi: 10.3969/j.issn.1673-3827.2021.01.013.
|
[27] |
Gál L, Fóthi Á, Orosz G, et al. Exosomal small RNA profiling in first-trimester maternal blood explores early molecular pathways of preterm preeclampsia[J]. Front Immunol, 2024,15:1321191. doi: 10.3389/fimmu.2024.1321191.
|
[28] |
Chen F, Chen X, Cai W, et al. Mesenchymal Stem Cell-Derived Exosomal Long Noncoding RNA MALAT1-201 Regulated the Proliferation, Apoptosis and Migration of Trophoblast Cells via Targeting miR-141[J]. Ann Clin Lab Sci, 2022, 52(5):741-752.
pmid: 36261177
|
[29] |
Wu M, Zhao Y, Li L, et al. Exosomal microRNA-302a promotes trophoblast migration and proliferation, and represses angiogenesis by regulating the expression levels of VEGFA in preeclampsia[J]. Mol Med Rep, 2021, 24(6):864. doi: 10.3892/mmr.2021.12504.
|
[30] |
Yang LP, Zheng JH, Zhang JK, et al. Dysregulated miR-222-3p in plasma exosomes of preeclampsia patients and its In vitro effect on HTR8/SVneo extravillous trophoblast cells by targeting STMN1[J]. Hum Exp Toxicol, 2022,41:9603271221138550. doi: 10.1177/09603271221138550.
|
[31] |
Sun B, Jiang T, Yong J, et al. MiR-135b-5p targets ADAM12 to suppress invasion and accelerate trophoblast apoptosis in preeclampsia[J]. Placenta, 2023, 143:69-79. doi: 10.1016/j.placenta.2023.10.004.
pmid: 37864886
|
[32] |
Taga S, Hayashi M, Nunode M, et al. miR-486-5p inhibits invasion and migration of HTR8/SVneo trophoblast cells by down-regulating ARHGAP5[J]. Placenta, 2022, 123:5-11. doi: 10.1016/j.placenta.2022.04.004.
pmid: 35477045
|
[33] |
Chen Z, Wu M, Huang H, et al. Plasma Exosomal miR-199a-5p Derived from Preeclampsia with Severe Features Impairs Endothelial Cell Function via Targeting SIRT1[J]. Reprod Sci, 2022, 29(12):3413-3424. doi: 10.1007/s43032-022-00977-0.
pmid: 36071344
|
[34] |
Zou G, Ji Q, Geng Z, et al. miR-31-5p from placental and peripheral blood exosomes is a potential biomarker to diagnose preeclampsia[J]. Hereditas, 2022, 159(1):35. doi: 10.1186/s41065-022-00250-z.
pmid: 36123601
|
[35] |
Xu XR, Cheng L, Wang YP. Prediction of severe preeclampsia and intrauterine growth restriction based on serum placental exosome miR-520a-5p levels during the first-trimester[J]. Medicine(Baltimore), 2024, 103(20):e38188. doi: 10.1097/MD.0000000000038188.
|
[36] |
倪霞, 王琴, 谢冰, 等. 胎盘源外泌体中miR-155对Th17/Treg免疫细胞的影响在子痫前期发病中的作用研究进展[J]. 现代医药卫生, 2023, 39(23):4078-4083. doi: 10.3969/j.issn.1009-5519.2023.23.025.
|
[37] |
陈静, 秦智慧, 何方舟. MicroRNA-155在子痫前期发病机制中的研究进展[J]. 中国优生与遗传杂志, 2015, 23(9):14-16.
|
[38] |
Witvrouwen I, Mannaerts D, Ratajczak J, et al. MicroRNAs targeting VEGF are related to vascular dysfunction in preeclampsia[J]. Biosci Rep, 2021, 41(8):BSR20210874. doi: 10.1042/BSR20210874.
|
[39] |
李聪聪, 赵金艳, 吴姣, 等. miR-155研究进展[J]. 生物技术通报, 2018, 34(11):13. doi: 10.13560/j.cnki.biotech.bull.1985.2018-0331.
|
[40] |
雷桂兰, 汪有新. 子痫前期产妇外周血中树突状细胞、Th1Th2细胞含量检测[J]. 海南医学院学报, 2014, 20(12):1681-1683. doi: 10.13210/j.cnki.jhmu.20141010.018.
|
[41] |
Mann M, Mehta A, Zhao JL, et al. An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses[J]. Nat Commun, 2017, 8(1):851. doi: 10.1038/s41467-017-00972-z.
pmid: 29021573
|
[42] |
Kim S, Lee KS, Choi S, et al. NF-κB-responsive miRNA-31-5p elicits endothelial dysfunction associated with preeclampsia via down-regulation of endothelial nitric-oxide synthase[J]. J Biol Chem, 2018, 293(49):18989-19000. doi: 10.1074/jbc.RA118.005197.
pmid: 30279269
|