| [1] |
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779):575-580. doi: 10.1038/s41586-019-1678-1.
|
| [2] |
Zhao H, Wong RJ, Stevenson DK. The Impact of Hypoxia in Early Pregnancy on Placental Cells[J]. Int J Mol Sci, 2021, 22(18):9675. doi: 10.3390/ijms22189675.
|
| [3] |
Yang W, Wang P, Cao P, et al. Hypoxic in vitro culture reduces histone lactylation and impairs pre-implantation embryonic development in mice[J]. Epigenetics Chromatin, 2021, 14(1):57. doi: 10.1186/s13072-021-00431-6.
pmid: 34930415
|
| [4] |
汤倩, 李希彤, 焦梦文, 等. 组蛋白乳酸化修饰在胚胎发育过程及女性生殖系统疾病中的研究进展[J]. 现代妇产科进展, 2024, 33(12):948-951. doi: 10.13283/j.cnki.xdfckjz.2024.12.014.
|
| [5] |
高娜, 窦真, 赵晓丽, 等. 乳酸调控蜕膜微环境的作用机制研究进展[J]. 中华生殖与避孕杂志, 2025, 45(2):212-216. doi: 10.3760/cma.j.cn101441-20240918-00349.
|
| [6] |
Burton GJ, Cindrova-Davies T, Yung HW, et al. HYPOXIA AND REPRODUCTIVE HEALTH: Oxygen and development of the human placenta[J]. Reproduction, 2021, 161(1):F53-F65. doi: 10.1530/REP-20-0153.
|
| [7] |
Ma LN, Huang XB, Muyayalo KP, et al. Lactic Acid: A Novel Signaling Molecule in Early Pregnancy?[J]. Front Immunol, 2020, 11:279. doi: 10.3389/fimmu.2020.00279.
|
| [8] |
Zhao W, Wang Y, Liu J, et al. Progesterone Activates the Histone Lactylation-Hif1α-glycolysis Feedback Loop to Promote Decidualization[J]. Endocrinology, 2023, 165(1):bqad169. doi: 10.1210/endocr/bqad169.
|
| [9] |
Kierans SJ, Taylor CT. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology[J]. J Physiol, 2021, 599(1):23-37. doi: 10.1113/JP280572.
|
| [10] |
Dai X, Lv X, Thompson EW, et al. Histone lactylation: epigenetic mark of glycolytic switch[J]. Trends Genet, 2022, 38(2):124-127. doi: 10.1016/j.tig.2021.09.009.
|
| [11] |
Liang X, Tang S, Song Y, et al. Effect of 2-deoxyglucose-mediated inhibition of glycolysis on migration and invasion of HTR-8/SVneo trophoblast cells[J]. J Reprod Immunol, 2023, 159:104123. doi: 10.1016/j.jri.2023.104123.
|
| [12] |
Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis[J]. Science, 2011, 332(6036):1429-1433. doi: 10.1126/science.1204592.
pmid: 21617040
|
| [13] |
Zheng W, Zhang Y, Xu P, et al. TFEB safeguards trophoblast syncytialization in humans and mice[J]. Proc Natl Acad Sci U S A, 2024, 121(28):e2404062121. doi: 10.1073/pnas.2404062121.
|
| [14] |
Cesana M, Tufano G, Panariello F, et al. TFEB controls syncytiotrophoblast formation and hormone production in placenta[J]. Cell Death Differ, 2024, 31(11):1439-1451. doi: 10.1038/s41418-024-01337-y.
pmid: 38965447
|
| [15] |
Huang Y, Luo G, Peng K, et al. Lactylation stabilizes TFEB to elevate autophagy and lysosomal activity[J]. J Cell Biol, 2024, 223(11):e202308099. doi: 10.1083/jcb.202308099.
|
| [16] |
Jia M, Yue X, Sun W, et al. ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation[J]. Sci Adv, 2023, 9(22):eadg4993. doi: 10.1126/sciadv.adg4993.
|
| [17] |
Sun W, Jia M, Feng Y, et al. Lactate is a bridge linking glycolysis and autophagy through lactylation[J]. Autophagy, 2023, 19(12):3240-3241. doi: 10.1080/15548627.2023.2246356.
|
| [18] |
Yang Q, Liu J, Wang Y, et al. A proteomic atlas of ligand-receptor interactions at the ovine maternal-fetal interface reveals the role of histone lactylation in uterine remodeling[J]. J Biol Chem, 2022, 298(1):101456. doi: 10.1016/j.jbc.2021.101456.
|
| [19] |
Jaiswal MK, Mallers TM, Larsen B, et al. V-ATPase upregulation during early pregnancy: a possible link to establishment of an inflammatory response during preimplantation period of pregnancy[J]. Reproduction, 2012, 143(5):713-725. doi: 10.1530/REP-12-0036.
|
| [20] |
Mor G, Cardenas I, Abrahams V, et al. Inflammation and pregnancy: the role of the immune system at the implantation site[J]. Ann N Y Acad Sci, 2011, 1221(1):80-87. doi: 10.1111/j.1749-6632.2010.05938.x.
|
| [21] |
Krop J, Tian X, van der Hoorn ML, et al. The Mac Is Back: The Role of Macrophages in Human Healthy and Complicated Pregnancies[J]. Int J Mol Sci, 2023, 24(6):5300. doi: 10.3390/ijms24065300.
|
| [22] |
Gardner DK. Lactate production by the mammalian blastocyst: manipulating the microenvironment for uterine implantation and invasion?[J]. Bioessays, 2015, 37(4):364-371. doi: 10.1002/bies.201400155.
pmid: 25619853
|
| [23] |
Irizarry-Caro RA, McDaniel MM, Overcast GR, et al. TLR signaling adapter BCAP regulates inflammatory to reparatory macrophage transition by promoting histone lactylation[J]. Proc Natl Acad Sci U S A, 2020, 117(48):30628-30638. doi: 10.1073/pnas.2009778117.
|
| [24] |
Li L, Chen K, Wang T, et al. Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade[J]. Nat Metab, 2020, 2(9):882-892. doi: 10.1038/s42255-020-0267-9.
pmid: 32839595
|
| [25] |
Tian Q, Zhou LQ. Lactate Activates Germline and Cleavage Embryo Genes in Mouse Embryonic Stem Cells[J]. Cells, 2022, 11(3):548. doi: 10.3390/cells11030548.
|
| [26] |
Galle E, Wong CW, Ghosh A, et al. H3K18 lactylation marks tissue-specific active enhancers[J]. Genome Biol, 2022, 23(1):207. doi: 10.1186/s13059-022-02775-y.
pmid: 36192798
|
| [27] |
Xu R, Huang Y, Xie W, et al. HLA-F regulates the proliferation of trophoblast via PKM2-dependent glycolysis in the pathogenesis of preeclampsia[J]. Mol Med, 2025, 31(1):142. doi: 10.1186/s10020-025-01201-w.
pmid: 40251569
|
| [28] |
Zhu Y, Wu F, Hu J, et al. LDHA deficiency inhibits trophoblast proliferation via the PI3K/AKT/FOXO1/CyclinD1 signaling pathway in unexplained recurrent spontaneous abortion[J]. FASEB J, 2023, 37(2):e22744. doi: 10.1096/fj.202201219RR.
|
| [29] |
Zhang XY, Qin XY, Shen HH, et al. IL-27 deficiency inhibits proliferation and invasion of trophoblasts via the SFRP2/Wnt/β-catenin pathway in fetal growth restriction[J]. Int J Med Sci, 2023, 20(3):392-405. doi: 10.7150/ijms.80684.
|
| [30] |
Kedziora SM, Obermayer B, Sugulle M, et al. Placental Transcriptome Profiling in Subtypes of Diabetic Pregnancies Is Strongly Confounded by Fetal Sex[J]. Int J Mol Sci, 2022, 23(23):15388. doi: 10.3390/ijms232315388.
|
| [31] |
Feng Q, Yang P, Lyu J, et al. The overview of lactylation in the placenta of preeclampsia[J]. Placenta, 2025, 160:135-143. doi: 10.1016/j.placenta.2025.01.003.
pmid: 39799845
|
| [32] |
Li X, Yang N, Wu Y, et al. Hypoxia regulates fibrosis-related genes via histone lactylation in the placentas of patients with preeclampsia[J]. J Hypertens, 2022, 40(6):1189-1198. doi: 10.1097/HJH.0000000000003129.
pmid: 35703881
|
| [33] |
Shen XY, Huang J, Chen LL, et al. Blocking lactate regulation of the Grhl2/SLC31A1 axis inhibits trophoblast cuproptosis and preeclampsia development[J]. J Assist Reprod Genet, 2024, 41(11):3201-3212. doi: 10.1007/s10815-024-03256-w.
|
| [34] |
Li X, Wang Q, Fei J, et al. Lactate promotes premature aging of preeclampsia placentas through histone lactylation-regulated GADD45A[J]. Placenta, 2025, 161:39-51. doi: 10.1016/j.placenta.2025.01.010.
pmid: 39908745
|
| [35] |
Hoch D, Gauster M, Hauguel-de Mouzon S, et al. Diabesity-associated oxidative and inflammatory stress signalling in the early human placenta[J]. Mol Aspects Med, 2019, 66:21-30. doi: 10.1016/j.mam.2018.11.002.
pmid: 30513311
|
| [36] |
Huang X, Yip K, Nie H, et al. ChIP-seq and RNA-seq Reveal the Involvement of Histone Lactylation Modification in Gestational Diabetes Mellitus[J]. J Proteome Res, 2024, 23(6):1937-1947. doi: 10.1021/acs.jproteome.3c00727.
pmid: 38776154
|
| [37] |
Gao P, Zha Y, Gong X, et al. The role of maternal-foetal interface inflammation mediated by NLRP3 inflammasome in the pathogenesis of recurrent spontaneous abortion[J]. Placenta, 2020, 101:221-229. doi: 10.1016/j.placenta.2020.09.067.
pmid: 33022545
|
| [38] |
Hu H, Peng Y, Wang CC, et al. Neutrophil extracellular traps induce trophoblasts pyroptosis via enhancing NLRP3 lactylation in SLE pregnancies[J]. J Autoimmun, 2025, 153:103411. doi: 10.1016/j.jaut.2025.103411.
|
| [39] |
Yan X, Wang X, Sun X, et al. Discovery of protein lactylation-associated biomarkers and their potential pathogenic mechanisms in recurrent spontaneous abortion[J]. Int J Biol Macromol, 2025, 321(Pt 4):146004. doi: 10.1016/j.ijbiomac.2025.146004.
|
| [40] |
高倩倩, 任佳杰, 牛丁忍, 等. 蛋白质翻译后修饰在不明原因复发性流产中的作用[J]. 中南大学学报(医学版), 2024, 49(9):1495-1502. doi: 10.11817/j.issn.1672-7347.2024.240365.
|
| [41] |
顾伟玉, 韩越, 曲星霖, 等. 组蛋白乳酸化在胚胎发育和子宫内膜容受性中的作用及其研究进展[J]. 中国畜牧杂志, 2023, 59(11):48-53. doi: 10.19556/j.0258-7033.20221206-07.
|