[1] |
中华医学会妇产科学分会妊娠期高血压疾病学组. 妊娠期高血压疾病诊治指南(2020)[J]. 中华妇产科杂志, 2020, 55(4):227-238. doi: 10.3760/cma.j.cn112141-20200114-00039.
|
[2] |
Chappell LC, Cluver CA, Kingdom J, et al. Pre-eclampsia[J]. Lancet, 2021, 398(10297):341-354. doi: 10.1016/S0140-6736(20)32335-7.
|
[3] |
Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222[J]. Obstet Gynecol, 2020, 135(6):e237-e260. doi: 10.1097/AOG.0000000000003891.
|
[4] |
孔凡静, 王莉, 杜趁香, 等. 子痫前期发生的危险因素及孕中期血清PLGF、sFlt-1、ET-1水平的临床预测价值[J]. 实验与检验医学, 2022, 40(5):572-575,580. doi: 10.3969/j.issn.1674-1129.2022.05.013.
|
[5] |
梁结明, 刘国成. 子痫前期发病机制的研究进展[J]. 国际妇产科学杂志, 2023, 50(4):405-408,420. doi: 10.12280/gjfckx.20230106.
|
[6] |
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression[J]. Biomolecules, 2021, 11(2):247. doi: 10.3390/biom11020247.
|
[7] |
Newcombe EA, Delaforge E, Hartmann-Petersen R, et al. How phosphorylation impacts intrinsically disordered proteins and their function[J]. Essays Biochem, 2022, 66(7):901-913. doi: 10.1042/EBC20220060.
pmid: 36350035
|
[8] |
Ijomone OM, Iroegbu JD, Aschner M, et al. Impact of environmental toxicants on p38- and ERK-MAPK signaling pathways in the central nervous system[J]. Neurotoxicology, 2021, 86:166-171. doi: 10.1016/j.neuro.2021.08.005.
pmid: 34389354
|
[9] |
郭辉. 磷酸化丝裂原蛋白活化激酶P38、肿瘤坏死因子-α、核因子-κB p65与妊娠期高血压疾病关系的研究[D]. 石家庄: 河北医科大学, 2010.
|
[10] |
Fitzgerald JS, Busch S, Wengenmayer T, et al. Signal transduction in trophoblast invasion[J]. Chem Immunol Allergy, 2005, 88:181-199. doi: 10.1159/000087834.
pmid: 16129946
|
[11] |
Hu M, Zheng Y, Liao J, et al. miR21 modulates the Hippo signaling pathway via interference with PP2A Bβ to inhibit trophoblast invasion and cause preeclampsia[J]. Mol Ther Nucleic Acids, 2022, 30:143-161. doi: 10.1016/j.omtn.2022.09.006.
|
[12] |
Park J, Cho J, Song EJ. Ubiquitin-proteasome system (UPS) as a target for anticancer treatment[J]. Arch Pharm Res, 2020, 43(11):1144-1161. doi: 10.1007/s12272-020-01281-8.
pmid: 33165832
|
[13] |
蒋寒宇, 顾文文, 王健. 母胎界面的蛋白质泛素化修饰及其与病理妊娠相关性的研究进展[J]. 生殖医学杂志, 2022, 31(5):701-706. doi: 10.3969/j.issn.1004-3845.2022.05.022.
|
[14] |
Choudhury J, Pandey D, Chaturvedi PK, et al. Epigenetic regulation of epithelial to mesenchymal transition: a trophoblast perspective[J]. Mol Hum Reprod, 2022, 28(5):gaac013. doi: 10.1093/molehr/gaac013.
|
[15] |
Wu D, Shi L, Chen X, et al. β-TrCP suppresses the migration and invasion of trophoblast cells in preeclampsia by down-regulating Snail[J]. Exp Cell Res, 2020, 395(2):112230. doi: 10.1016/j.yexcr.2020.112230.
|
[16] |
Chen G, Chen L, Huang Y, et al. Increased FUN14 domain containing 1 (FUNDC1) ubiquitination level inhibits mitophagy and alleviates the injury in hypoxia-induced trophoblast cells[J]. Bioengineered, 2022, 13(2):3620-3633. doi: 10.1080/21655979.2021.1997132.
|
[17] |
Chiang MH, Liang FY, Chen CP, et al. Mechanism of hypoxia-induced GCM1 degradation: implications for the pathogenesis of preeclampsia[J]. J Biol Chem, 2009, 284(26):17411-17419. doi: 10.1074/jbc.M109.016170.
|
[18] |
Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation[J]. Nat Rev Mol Cell Biol, 2022, 23(5):329-349. doi: 10.1038/s41580-021-00441-y.
|
[19] |
Zhang B, Kim MY, Elliot G, et al. Human placental cytotrophoblast epigenome dynamics over gestation and alterations in placental disease[J]. Dev Cell, 2021, 56(9):1238-1252.e5. doi: 10.1016/j.devcel.2021.04.001.
pmid: 33891899
|
[20] |
Hu B, Li D, Tang D, et al. Integrated proteome and acetylome analyses unveil protein features of gestational diabetes mellitus and preeclampsia[J]. Proteomics, 2022, 22(22):e2200124. doi: 10.1002/pmic.202200124.
|
[21] |
Xiong L, Ye X, Chen Z, et al. Advanced Maternal Age-associated SIRT1 Deficiency Compromises Trophoblast Epithelial-Mesenchymal Transition through an Increase in Vimentin Acetylation[J]. Aging Cell, 2021, 20(10):e13491. doi: 10.1111/acel.13491.
|
[22] |
Peng W, Liu Y, Qi H, et al. Alpha-actinin-4 is essential for maintaining normal trophoblast proliferation and differentiation during early pregnancy[J]. Reprod Biol Endocrinol, 2021, 19(1):48. doi: 10.1186/s12958-021-00733-0.
|
[23] |
Shangguan Y, Wang Y, Shi W, et al. Systematic proteomics analysis of lysine acetylation reveals critical features of placental proteins in pregnant women with preeclampsia[J]. J Cell Mol Med, 2021, 25(22):10614-10626. doi: 10.1111/jcmm.16997.
pmid: 34697885
|
[24] |
李佳丽. 蛋白质糖基化与疾病关系的研究进展[J]. 海南医学, 2023, 34(4):589-592. doi: 10.3969/j.issn.1003-6350.2023.04.028.
|
[25] |
Flood-Nichols SK, Kazanjian AA, Tinnemore D, et al. Aberrant glycosylation of plasma proteins in severe preeclampsia promotes monocyte adhesion[J]. Reprod Sci, 2014, 21(2):204-214. doi: 10.1177/1933719113492210.
pmid: 23757314
|
[26] |
Dos Passos Junior RR, de Freitas RA, Dela Justina V, et al. Protein O-GlcNAcylation as a nutrient sensor signaling placental dysfunction in hypertensive pregnancy[J]. Front Endocrinol(Lausanne), 2022, 13:1032499. doi: 10.3389/fendo.2022.1032499.
|
[27] |
Yang M, Li H, Rong M, et al. Dysregulated GLUT1 may be involved in the pathogenesis of preeclampsia by impairing decidualization[J]. Mol Cell Endocrinol, 2022, 540:111509. doi: 10.1016/j.mce.2021.111509.
|
[28] |
Herghelegiu CG, Veduta A, Stefan MF, et al. Hyperglycosylated-hCG: Its Role in Trophoblast Invasion and Intrauterine Growth Restriction[J]. Cells, 2023, 12(12):1647. doi: 10.3390/cells12121647.
|
[29] |
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779):575-580. doi: 10.1038/s41586-019-1678-1.
|
[30] |
Li X, Yang N, Wu Y, et al. Hypoxia regulates fibrosis-related genes via histone lactylation in the placentas of patients with preeclampsia[J]. J Hypertens, 2022, 40(6):1189-1198. doi: 10.1097/HJH.0000000000003129.
pmid: 35703881
|
[31] |
Zou L, Yang Y, Wang Z, et al. Lysine Malonylation and Its Links to Metabolism and Diseases[J]. Aging Dis, 2023, 14(1):84-98. doi: 10.14336/AD.2022.0711.
|
[32] |
Bruning U, Morales-Rodriguez F, Kalucka J, et al. Impairment of Angiogenesis by Fatty Acid Synthase Inhibition Involves mTOR Malonylation[J]. Cell Metab, 2018, 28(6):866-880.e15. doi: 10.1016/j.cmet.2018.07.019.
pmid: 30146486
|